4tH, the friendly Forth compiler

J.L. Bezemer

June 13, 2022

Contents

1 What’s new

I Getting Started

2 Overview

2.1
2.2
2.3
24

3 Installation Guide

3.1

32
33
34
3.5
3.6

Introduction
History
Applications
Architecture
24.1 Thed4tHIlanguage
242 H-code
243 H-codecompiler
244 Errorhandling
245 InterfacingwithCo L
About thispackage
3.1.1 Examplecode.
3.1.2 Main program e e
3.1.3 Unixpackage
3.14 Linuxpackage
3.1.5 MS-DOSpackage
3.1.6 MS-Windows package
Setting up your working directory
Now what?
Pedigree e
Contributors e
Questions L e e
3.6.1 4tHwebsite L
3,62 4tHGooglegroup
363 Newsgroup o v it e

19

22

23
23
23
24
24
26
26
27
28
28

CONTENTS

4 A guided tour

4.1
42
43
4.4
45
4.6
47
4.8
49
4.10

4tHInteractive e e e e
Startingup 4tH
Running aprogram
Starting an editing session
Writing your first 4tH program o oL
A more complex program Lo
Advancedfeatures o oo o
Suspending a programo e
Calculatormode

Epilogue e

5 Frequently asked questions

II Primer

6 Introduction

7 4tH fundamentals

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

Making calculations without parentheses
Manipulating the stack o o
Deep stack manipulators oL
Passing arguments to functions oL
Making yourown wordso
Addingcomment e
Text-formatof 4tHsource
Displaying string literals
Creating variables L
Using variables

Built-in variableso

What is a literal expression? Lo oL
Declaring arrays of numbers oL
Using arrays of numbers
Copying arrays of numbers
Declaring and using constants
Built-inconstants Lo

Using booleans e

41
41
41
42
42
43
47
51
58
60
60

61

64

65

CONTENTS 3

7.20 IF-ELSE constructs 75
7.21 FOR-NEXT constructs vt 75
7.22 WHILE-DO constructs 76
7.23 REPEAT-UNTIL constructs 77
7.24 Infinite loops 77
7.25 Including sourcefileso o oL 77
7.26 Getting a number from the keyboard 78
8 4tH arrays 79
8.1 Aligningnumbers oL 79
8.2 Creating arraysofconstants 79
8.3 Usingarraysofconstants 79
84 Usingvalues. e 80
8.5 Creating string variables oL oL 81
8.6 Whatisanaddress? 81
8.7 Stringliterals 82
8.8 Stringconstants 82
8.9 [Initializing string variables 0oL 83
8.10 Initializing a NULL string variable 83
8.11 Getting the length of a string variable 83
8.12 Printing a string variable Lo 84
8.13 Copyingastring variable L. 84
8.14 The string terminator 84
8.15 Slicing strings e e e 85
8.16 Appending strings 86
8.17 Comparing Strings e 86
8.18 Findingasubstring 87
8.19 Replacing substrings 88
8.20 Deleting substrings L. 88
8.21 Removing trailingspaces oo 89
8.22 Removing leading spaces L. 89
8.23 Upperandlowercase v v vt it 90
8.24 String literals and string variables L. 90
8.25 Printing individual characters 0oL, 91
8.26 Distinguishing characters 91
8.27 Getting ASCII values 92
8.28 Printing spaces e e 92
8.29 Fetching individual characters 93
8.30 Storing individual characters L. 93
8.31 Getting a string from the keyboard, 95

CONTENTS 4

9 Character Segment 96
9.1 The Character Segment 96
9.2 Whatisthe TIB? 96
9.3 Whatisthe PAD? 97
94 Howdoluse TIBandPAD? 97
9.5 Simpleparsing oo 97
9.6 Converting astringtoanumber. 99
9.7 Controllingtheradix, 99
9.8 Pictured numericoutput 102
9.9 printf () likeformatting L. 105
9.10 Converting anumbertoastring. 106
9.11 Aborting a program it e e e e 107
9.12 Openingafile oL 108
9.13 Reading and writing from/toafile 109
9.14 Closingafile e 110
9.15 Writing text-files 110
9.16 Readingtext-files 111
9.17 Readinglonglines 111
9.18 Readingbinaryfiles 112
9.19 Writingbinary files o Lo 112
9.20 Reading and writing block files 113
9.21 Parsingtextfiles 114
9.22 Parsingbinary files oL o 115
9.23 Parsing comma-delimited files 116
9.24 Parsing fixed-width textfiles 117
9.25 Advanced parsing e 119
9.26 scanf () likeparsing 119

9.26.1 Specifyingthewidth 121

9.26.2 Returnvalues 122
9.27 Appending to existingfileso oL 123
9.28 USINgPIPES v v v e 123
9.29 Opening a file inread/writemode 125
9.30 Usingrandomaccessfiles. 125
9.31 Thelayoutofthe I/Osystem 127
9.32 Usingaprinter e e e 127
9.33 The layout of the Character Segment 128

CONTENTS

10 Integer Segment and Code Segment

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

The Code Segment
The address of a colon-definition
Vectored execution
Executiontokens
The Integer Segment
A portable way to access application variables
Returning a result to the host program
Using commandline arguments

The layout of the Variable Area

10.10The stacks e

10.11Saving temporary values

10.12The Return Stack and the DO.LOOP

10.130ther Return Stack manipulations

10.14 Altering the flow with the Return Stack

10.15Leaving a colon-definition

10.16The layout of the Stack Area

10.17Booleans and numbers e

10.18Using > with othernames
10.19Deleting files

10.20Querying environment variables 0oL

10.21What is not implemented oL

10.22Known bugs and limitations

11 Advanced programming

11.1
11.2
11.3
11.4
11.5
11.6
11.7

11.8
11.9

Compiletime calculations
Conditional compilation
Checking the environment at compiletime
Checking a definition at compiletime
Exceptions
Enumerations
Forward declarations
11.7.1 Deferredwords
11.72 Trampoline
11.7.3 Which one should youuse?
Recursion

Private declarations

130
130
130
131
132
132
133
133
134
134
135
136
137
138
138
140
140
141
142
143
143
144
144

CONTENTS 6

ILIOALIases o o 156
11.11Changing behaviorof data 157
11.12Multidimensional arrayso 159
11.13Binary string constants 159
11.14Binary string variableso oL 161
11.15Records and structures 161
TL.I6UNIONS o oo o e 164
11.17Complex control structures 165
11.18 Alternative branch- and loop constructs 166
11.19CASE-OF constructso i it e .. 167
11.200ptimization oL 168
11.21Static variable pointers L. 172
T122ASSertions o i e 173
11.23Breakpoints oL 175
11.24Debugging 176
11.25Running 4tH programs from the Unix shell 177
11.26Embedding 4tH programs inabatchfile 178
12 Standard libraries 179
12.1 Adding yourownlibrary 179
12.2 Adding templates 181
12.3 Parsing the command line 183
12.4 Mixing character and numberdata 184
12.5 Dynamic memory allocation 185
12.6 Usingtwoheaps 187
12.7 Tweaking dynamic memory 187
12.8 Garbage collection 189
12.9 Dynamic Strings o v it e e e e 190
12.10Dynamic arrayso o i e e e e e e e 191
12.10.1 Random access oo 191
12.10.2 Sequential accesso 192
12.11Application stacks L 193
12.12Local variables 194
12.13Random numbers 198
12.14Sorting 200
12.15Bitfields 202

12.16Bitarrays o e e e e e e e e 203

CONTENTS 7

12.17 Associative arrays (using hash tables) 204
12.18 Associative arrays (using binary trees) 206
12.19Lookup tables with integerkeys 207
12.20Lookup tables with stringkeys 210
12.21Lookup tables with multiple keys 210
12.22Lookup tables with duplicate keys 211
12.23Binary search tables L o 212
12.24Dynamic binary searchtables 214
12.25Fixed point calculationo oL 215
12.25.1 Fractions 216
12.26Double numbers 217
12.27Floating point numbers (unified stack) 219
12.28Floating point numbers (separate stack) 220
12.29Floating point functionso 223
12.30Floating point configurations 224
12.31Forth Scientific Library L . 225
12.32Statistical functions 226
12.33Numerical integration 227
13 Special libraries 234
13.1 Infix formula translation! 234
13.2 Evaluating infix formulas at runtime> 236
13.3 Converting infix formulas® 237
134 Interpreters o oL e e e e e 237
135 Menus e 239
13.6 Finite state machines* 241
13.7 Virtual memory 243
13.8 Triplenumbers 245
139 TImers o ot e e e 246
13.10Time &date 246
13.11Tokenizing Strings o ottt 248
13.12Regular eXpressions® e i 249
13.13String pattern matching oL oL L 251

! Article written and contributed by David Johnson.

2 Article written and contributed by David Johnson.

3 Article written and contributed by David Johnson.

4Part of this section is based on an article in Forthwrite UK by Jenny Brien.

SPart of this text is derived from http://http://misc.yarinareth.net/regex.html by Dorothea Salo under the "Cre-
ative Commons Attribution 3.0 United States License”.

CONTENTS 8

13.14Wildcard pattern matching 255
13.15Escape characters 255
13.16Internationalization 256
13.17Chinese characters 259
13.18Sequences e e 259
13.19Managing INI'files 261
13.20Extract, transformand load 263
13.21Writing spreadsheetfiles 265
13.22Writing other tabular formats 0oL 266
13.23Writing ISTEX files 267
13.24Writing RTFfiles 270
13.25Writing HTML files o 271
13.26Converting to XML and HTML 273
13.27Databases e e 274
13.28Indexing adatabase 276
13.29Binding theindexes L 278
13.30Connecting tothe WWW 280
13.31Speech synthesis 281
13.32GUT applications v i it e 281
1333Card games 283
14 Graphics libraries 285
14.1 Portable bitmap graphics L. 285
142 Morelines o 288
14.3 Circles, ellipsesand arcs o v i vt 289
144 Fillingshapes e 291
14.5 Turtle graphics 292
14.6 Annotating portable bitmap images L. L 293
147 Colorpalettes e e 294
14.8 Viewing and modifying bitmapimages 295
14.9 3Dplotting 296

14.103D turtle graphics L. 299

CONTENTS

15 Preprocessor libraries
15.1 Introduction
15.2 Stackinstructions
153 Coroutines oo e e e e
154 Interpretationo e e
I5.5 Closures o o v v v it e e e
15.6 Objectorientation
15.6.1 Encapsulation
15.6.2 Subtype polymorphism oL
15.6.3 Inheritance
15.6.4 Usingcurlybraces
15.6.5 Lazy initialization
15.6.6 Forward declarationof classes
15.6.7 Determining the type and size of anobject.
15.6.8 Namespace pollution
15.6.9 Designpatterns v it e
157 Thisistheend

III Reference guide
16 Glossary

17 Editor manual
17.1 Introduction
17.2 Selecting a screen and inputoftext
173 Lineediting o i e
17.4 Line editingcommands
17.5 Screen editing commandso
17.6 Cursor control and string editing
17.7 Commands to position the cursor
17.8 String editingcommands
179 Savingandexiting
17.10Calculatormode

18 Shell manual
18.1 Introduction
18.2 Loadingandsaving
18.3 Taskmanagement
18.4 Scripting e e
18.5 Stack, I/O and arithmetic

302
302
303
304
305
306
307
307
309
311
314
315
316
316
317
317
318

320

321

426
426
426
426
427
427
427
428
428
428
428

CONTENTS

19

Preprocessor manual
19.1 Introduction oL e e
19.2 Macros o o e e e
19.2.1 Backquotedstrings
19.2.2 RegiSters v v v v i e e e e
19.23 Parsingstrings
19.24 Thestringstack L
19.2.5 Phony variables
19.2.6 Branchingandlooping
19.2.7 Functions
19.3 Invocation (SCript) o ot
19.3.1 Options v v v it e e
19.4 Invocation (executable),
1941 Options oottt
19.5 Preprocessorcommands e
19.6 Error messages o it it e e e e e e e e e
19.7 Known bugs and limitations

19.8 Preprocessor libraries oo

20 uBasic manual

21

20.1 Introductiono
20.2 Statements e e e e
203 Functions e e e
20.4 Error messages v v e e et e e e e e e e e e e e e

20.4.1 System mesSages e e e e e e e e e e e

TopITSM manual

21.1 Introduction
2111 Classes v i e

21.2 Requirements

21.3 Installing TopITSM

21.4 Using TopITSM e e e e e e
2141 Help.
21.42 Calculator
21.4.3 TopITSMdocuments oo v v v v v i vt
2144 TopITSM VIEWS v o i v it e e e e e e e e

21.4.5 Generating documents

CONTENTS

21.4.6

21.5 Backup and restore

21.5.1
21.5.2
21.5.3

Error handling

Backup
Restore

Changing node properties

22 ANS Forth statement

22.1 ANS-Forth Label
22.2 Unsupported CORE words
22.3 Supported ANS Forth word sets

22.3.1
2232
2233
2234
2235
22.3.6
22.3.7
22.3.8
22.39

22.3.10 Programming-Tools word set

Core Extensions wordset.
Block Extensions word set
Double number word set
Double number Extensions word set . . .
Facility Extensions word set
File-Accesswordset
File-Access Extensions word set
Floating-Point wordset

Floating-Point Extensions word set . . .

22.3.11 Programming-Tools Extensions word set

22.3.12 String word set
22.3.13 XCHAR word set
22.3.14 XCHAR Extensions word set

23 Porting guide

23.1 Introduction
23.2 General guidelines
23.3 Differences between 4tH and ANS-Forth

23.3.1
23.3.2
23.33
2334
23.3.5
23.3.6
23.3.7
23.3.8

Strings
Double numbers

Booleans

Interpretation and compilation mode . . .

BEGIN.WHILE..REPEAT

CONTENTS

24

25

26

23.3.9 DO.LOOP
2331010 . o o
234 Easy4tH e
23.4.1 Enabling the String Space
23.4.2 Thestructureof Easy4tH
23.5 The preprocessor v v v v v i e e e e e e e e
23.6 Converting ANS-Forth programsto4tH

Errors guide

24.1 Howtousethismanual
24.2 Interpreter (exec_4th)
24.3 Compiler (comp_4th)
244 Loader (load_4th)
24.5 Saver (save_4th) Lo

4tH library

25.1 4tHlibrary files e
252 FOOS classes v v i i it s e
25.3 Library dependencies

Change log

26.1 What'snewinversion3.64.0
26.2 What'snewinversion3.62.5 L.
26.3 What'snewinversion3.62.4
264 What'snewinversion3.62.3
26.5 What'snewinversion3.62.2
26.6 What'snew inversion3.62.1
26.7 What'snewinversion3.62.0
26.8 What’'snewinversion3.61.5
269 What'snewinversion3.61.4
26.10What’'snewinversion3.61.3
26.11What’'snewinversion3.61.2
26.12What’'snew in version 3.61.1 L L.
26.13What’'snew inversion3.61.0 L.
26.14What’'snew in version 3.60.1 L.
26.15What’'snew in version3.60.0 L.
26.16 What’s new in version 3.5d, release 3,

26.17What’s new in version 3.5d, release 2

CONTENTS

26.18What’'snew inversion3.5d oL oL
26.19What’s new in version 3.5c,release 3.
26.20What’s new in version 3.5c,release 2.
26.21What’'snew inversion3.5c oL oL
26.22What’s new in version 3.5b, release 2
26.23What’'snew inversion3.5b oL oL
26.24What’s new in version 3.5a,release 2.
26.25What’snew inversion 3.5a
26.26What’s new in version 3.3d, release 2
26.27What’'snew inversion3.3d oL o oL
26.28What’snew inversion 3.3c o
26.29What’'snewinversion3.3ao
26.30What’'snew inversion3.2e Lo oL

26.31What’snewinversion3.1d Lo

IV Development guide

27 Compiling the source
27.1 Introduction
27.2 Recommended and preferred compilers
273 Compiling4th L
274 Compiling thelibrary L o
27.5 Choosing Makefiles
27.6 Sharedlibrary o
27.7 64-bitplatforms
27.8 Regenerating theincludefiles.
27.9 Optimizationsot t e
27.10GCC specific optimizations
27.11Using thelibrary e

27.12Convert 4tH programs to native executables

28 Using the 4tH API
28.1 Introduction
28.2 Asampleprogram.
28.3 Afirstlookatopen_4th()
28.4 AcloserlookatH-code
28.5 AcloserlookatHX-code

13

553
555
555
557
558
559
560
561
565
567
569
570
572
574

578

579
579
579
580
581
582
583
583
584
585
585
586
587

CONTENTS 14

29

28.6 Afirstlookatcomp_4th(). 596
28.7 Afirstlookatexec_4th() 597
28.8 Afirstlookatfree_4th() 599
28.9 Afirstlookatsave 4th(), 601
28.10A firstlook at load_4th() 602
28.11A first look at error-trapping 602
28.12A firstlook at dump_4th() 603
28.13A firstlook atcgen_4th() 606
28.14Converting HXfiles 607
28.15A firstlook at fetch_4th() 607
28.16A first look at store_4th() 608
28.17Examples of embedded HX code 609
28.18Suspended execution 610
28.19Useful variables 615
Modifying 4tH 617
29.1 Introduction 617
29.2 Understanding 4tHs versioning 617
29.3 Acloserlookatcomp_4th(), 618
29.4 Addingaconstant L. 620
29.5 Addingaword 621
29.6 Acloserlookatexec_4th() 623
29.7 Afirstlook atname 4th() 625
29.8 Extendingthecompiler, 626
29.9 Making aliases 628
29.10Giving a name to an application variable 628
29.11Addingnew variables 0oL 629
29.12Resizing the 4tH environment 631
29.13Tuning pipe failure detection 632
29.14Adding new error MeSSAZES o e e e e 634
29.15Sizing the Code Segment 635
29.16 Adding inline macros e 637
29.17Adding string words L. Lo 638
29.18 Adding words with arguments 641
29.19Packing several words intoonetoken L 642
29.20Adding conditionals L 643

29.21Extending the /O subsystem 648

CONTENTS 15

29.22Using the symboltable 649
29.23Using variables and datatypes 652
29.240thertools 653
29.25Patching 4tH 654
29.25.1Tokens 654
20252 Wordso 654
29.25.3 The virtual machine 655
29.254Immediate wordsl 656
29.25.5 Applying the patches 657

29.25.6 ErTor messages« .« oot e 658

List of Figures

2.1 Integer segmentlayout 25
2.2 Character segment layout 26
2.3 Hceodestructure oL e e e e 27
4.1 Editor architecture 43
9.1 Character segment 96
9.2 ThedtHI/Osystem o v i ittt e e 127
10.1 Integer segmento 133
13.1 GTKdemo e 282
14.1 Bézier curve with end points Py and P> and control point Py 291
14.2 ASCII art view of a color bitmap image 296
143 Mirrored boxes 298
144 Twoboxes o e 301
25.1 Floating pointI/Ostacks 515
25.2 Double, mixed and floating point word dependencies (ANS) 516
25.3 Double, mixed and floating point word dependencies (Zen) 516
28.1 Heodestructure ot it e 592

16

List of Tables

8.1 Character typingwords 91
9.1 Picture library formatting characters 105
9.2 Listofsupported printf () flags 107
9.3 Width and precisionof printf () 108
9.4 Listof supported printf () specifiers 109
9.5 Supported scanf () specifications 121
12.1 NELL equivalents i 185
12.2 gmkiss randomizers and their registers 199
12.7 Examples of single and double number counterparts 218
12.8 Range and digits of precision L. 221
12.9 Examples of single and floating point number counterparts 222
12.10IEEE 754 FP matherrors 223
12.3 4tHrandomizers. 230
12.4 4tH sorting algorithms (addressbased) 231
12.5 4tH sorting algorithms (index based) 232
12.6 Fractionwords 232
12.11ANS-Forth functions 232
12.12Floating point configurations 233
12.13Statistical functions L. 233
13.1 KPRE supported metacharacters 250
13.2 KPRE characterclasses 250
13.3 Supported control characters 255
13.4 Spreadsheet formats supportedby 4tH 265
13.5 Example spreadsheet 266
13.6 Spreadsheetwords 267
13.7 Other tabular formats 267

LIST OF TABLES 18

13.8 IAIgXtableformat 269
14.5 Viewing and modifying bitmap images 297
14.6 3D plottingwordset 300
147 3D plotting examples o 300
172 DCcommands o i vt e 429
18.1 4tshcommands e 432
19.1 Macrocommands e e e 443
20.2 Arguments for INFO() 451
23.1 Dumbwords 471
26.1 Database index conversion 527
26.2 Forth-79 to ANS conversion, 574
27.1 Listof compilers e 580
28.1 APIfunctions i e 590
28.2 HX type-byteencoding 593
29.1 comp_4th() variables L 618
29.2 exec_4th()basic API 623
293 comp_4th(basic APT 627
29.4 Examplesofaliases 628
29.5 Mapping between 4tH and C variables 629
29.6 Mapping between 4tH and C variablenames 629
29.7 Accessing 4tHdatafromC 641
29.8 exec_4th()dataaccess API, 642
29.9 Exampleexecutionplan.o 645
29.10Branchresolving APT L oL 645
29.11Members of Stream[] structure 649
29.12Device Status MACTOS .« . .+« v v v v v e e e e e e e e e e e e 649
29.13Symboltable APT 649

29.14Table search API 651

Chapter 1

What’s new

What’s new in version 3.64.1

Words

The words PROTO: and : PROTO were added.

The words TO and IS were changed.

Functionality

The words PROTO: and : PROTO were added.

REFILL now supports CR-delimited files.

Radixsort LSB and Binary Quicksort were added to the sort algorithms.
A functional equivalent of the scanf () C-function was added.
sprintf.4th now supports unsigned, octal and hexadecimal formats.
A lighter version of the FPOUT library, sfpout . 4th, was added.

An interface to Wget and cURL was added.

Another dynamic array library, more suited for sequential access, was added.

Bugfixes

A bugin comp_4th.c caused 4tH to allocate too many symboltable entries when
using IS or TO.

Abugin comp_4th. c caused 4tH to complain about empty strings when there was
more than one space between CHAR, [CHAR], [DEFINED] or [UNDEFINED] and
the string or name following it.

Abugin 4th.c,mon.4th and editor.4th caused a crash when CRTL-D was
pressed.

A bugin 4tsh. c caused a memory leak when too many tasks were added.

Several Zen FP routines were upgraded to 64-bit accuracy.

19

CHAPTER 1. WHAT’S NEW 20

Developer

* The words PROTO: and : PROTO were added.
e The words TO and IS were changed.
e REFILL now supports CR-delimited files.

* Radixsort LSB (radxsort.4th) and Binary Quicksort (binquick.4th) were
added to the sort algorithms.

¢ A functional equivalent of the scanf () C-function was added (sscanf.4th).
e sprintf.4th now supports unsigned, octal and hexadecimal formats.

* The names of the words in fpdot . 4th were changed.

* A lighter version of the FPOUT library, sfpout . 4th, was added.

* An interface to Wget and cURL was added (wwwopen . 4th).

¢ Another dynamic array library (darray.4th), more suited for sequential access,
was added.

Documentation

* All documentation now reflects the functionality of the current version;
* The installation guide for Android was removed;

* The section on forward declarations was expanded.

* The section on dynamic arrays was expanded.

e A section on scanf () was added.

* A section on cURL and Wget was added.

Hints

Porting your v3.64.0 programs to v3.64.1 shouldn’t be any problem. Most source files will
compile correctly without modification. There are a few things to consider:

TO and IS

In previous versions it was possible - although discouraged - to use TO without a preceding
VALUE - and IS without a preceding DEFER. This practice interfered with source code
analysis 4tH performs before actual compilation begins - and hence the size estimations
were slightly off.

This has been corrected in this version, but may lead to compilation errors of previously
correctly compiling programs. If such errors occur, the easiest fix is to declare the offending
VALUE or DEFER at the beginning of the program, right after all library members have been
included.

CHAPTER 1. WHAT’S NEW 21

FPDOTA4TH

The names were changed in order to bring them in accordance with the names used in
dblsharp.4th. Libraries dependent on fpdot .4th habe been changed accordingly
and should not require any additional changes. The new names are: <F#,F#, F#S, FSIGN,
F#>and F#, S.

LUHN4TH

The name of this word was changed from LUHN to LUHN? in order to bring it in accordance
with the names in other validation libraries.

CTRL-D

It is a common practice in Unices to quit a program using CTRL-D. It is also available in
Microsoft’s Operating Systems, but there CTRL-Z and <ENTER> have to be pressed. In
effect, it closes stdin, so it returns EOF when accessed. It was a common practice in 4tH
to simply drop the value returned by REFILL when reading the keyboard. This practice is
now deprecated.

When REFILL is used in e.g. an interpreter loop, you should use:

BEGIN REFILL WHILE (..) REPEAT
Instead of:
BEGIN REFILL DROP (..) REPEAT

When a single entry is read from the keyboard, use:

REFILL UNLESS ABORT THEN

REFILL O= ABORT" User abort”

Instead of:

REFILL DROP

Note the appropriate libraries (like enter.4th, fenter. 4th) have been changed ac-
cordingly. They now throw an exception, which you might want to cater for in your pro-
grams.

New reserved words

If you used the any of the new reserved words in your program as a name, you should
replace those names by another. The new reserved words are PROTO: and : PROTO.

In order to prepare your programs for other changes, we strongly advise you not to use
any names which are also mentioned in the COMUS list, TOOLBELT list or (proposed')
ANS-Forth standard, except for porting purposes.

' A proposed ANS-Forth standard is usually published on comp.lang.forth (usenet) by an ANS-Forth commit-
tee member.

Part I

Getting Started

22

Chapter 2

Overview

2.1 Introduction

In essence, 4tH is Forth without the typical Forth architecture - a conventional compiler
that compiles Forth to portable bytecode and will seamlessly blend in your C development
environment. You can bind 4tH to your own C-program and call it as if it were just another
function.

But most people regard 4tH as a standalone compiler - which is absolutely fine.

2.2 History

To understand 4tH you have to know how it came to be. As most things in life, 4tH
developed slowly. Its predecessor is a C-function called st rcalc (). This function is an
implementation of a RPN calculator in one very compact function (about 6 kB source). It
works with signed 32 (or 64) bits integers and has about 20 commands and 20 variables.
The C-programmer can add additional variables.

Using it in a C-program is very easy too. Just pass the source as a string and add any
variables you need. It will return the result of that calculation.

Well, although primitive it can still be very useful. You can implement an interactive RPN
calculator in less than 5 lines of C. It can also be used to make calculations from sources
stored elsewhere, like in a file or an environment-variable. If you can store a string there,
you can store strcalc () source.

But we were not satisfied. We wanted to create some successor to strcalc () that could
be used to create applets, small applications that can be embedded in an application. Like
strcalc () it had to be fast and compact and easy to use. All these requirements and
’Reverse Polish Notation’. What language comes to mind first? Forth.

There were a few advantages and disadvantages to that approach. First, if it looked like
Forth, it had to be compatible with Forth up to a certain point. Second, if it looked like
Forth, we wouldn’t have to write thick manuals and explain how to use the language. Third,
if it looked like Forth, could we make it crash-proof?

A user can easily crash a Forth-system. Store something at a wrong address and your
system hangs. We don’t like that, even when the user is at fault. So we had to make a few
concessions somewhere, since adding checks means the program will be less compact and
slower.

23

CHAPTER 2. OVERVIEW 24

For a very long time we just didn’t get the right idea. Then on a dark night in October 1994,
it happened. The baby was called 4tH and could do everything strcalc () did.

It took quite a while before 4tH had successfully got away from its strcalc () roots.
The very first version was very buggy and little more than an RPN calculator with (incom-
patible) flowcontrol and some string facilities. It required two passes to compile a source
and the resulting bytecode could not be saved. The I/O was C-based and very primitive.
There was no Character Segment.

The second version got string and file facilities. The I/O and flowcontrol was completely
rewritten, so they now were fully Forth-compatible. The second pass was discarded and
H-code could finally be saved. The first move to ANS-Forth was made.

The third version came to be when the H-code eXecutable was created. This fileformat
made it possible to port bytecode across platforms. At the same time, 4tH moved more and
more toward ANS-Forth. Exception-handling and assertions were introduced. And in the
spring of 1997, version 3.1c was released to the general public.

Of course, 4tH didn’t stop there. Since then, a lot of features have been added - up to the
complete development environment it is today.

2.3 Applications

4tH is an excellent platform to learn Forth. It looks and behaves like a conventional com-
piler, but essentially is Forth. A Forth that detects virtually every error and reports what
was wrong and where it went wrong, but still is quite fast and compact.

But like any good teacher 4tH is quite strict. Forth allows constructions that should be
avoided. 4tH on the other hand, either does not implement these words or restricts their
usage.

Other Forth concepts are hard to handle, like the different wordsets for different kinds of
numbers. Plain 4tH only uses signed 32 (or 64') bit integers, which enables the programmer
to make a wide range of applications without being bothered by overflow. Pointers, integers
and characters are transparently converted.

But for those who wish to venture into the world of Object Orientation, mixed, double,
triple or floating point numbers - rest assured, we have all the facilities you might need.
Just include the appropriate library.

2.4 Architecture

4tH is a segmented Forth. There are different segments for constant strings, characters,
cells and tokens. This shows you where each data-type is located:

* Return stack (Integer Segment)

* Data stack (Integer Segment)

* Variables & values (Integer Segment)
* Vectors (Integer Segment)

e String variables (Character Segment)

"When compiled on a 64 bit platform.

CHAPTER 2. OVERVIEW 25

e Temporary storage (Character Segment)
* Compiled code (Code Segment)

* Compiled constants (Code Segment)

* String constants (String Segment)

* Symbols (Symbol Table)

The return-stack, data-stack and variables are allocated in one large array of signed 32 (or
64) bit integers. On top of that 4tHs primitives check all parameters. This makes 4tH a
very safe environment.

4tH also propagates clean programming. E.g. storing and fetching of the data-stack is not
allowed. You can only store and fetch in the Variable Area.

In effect, as far as we know 4tH cannot be crashed by a user-program. The memory layout
of the Integer Segment looks like figure 2.1.

The allocation of variables is totally trans-
parent to the C-programmer. He can also
transfer C-variables to the user-program
(application variables). These variables
can be used like any other variable. User varables

Combining return- and data-stack means
the C-programmer only has to worry about
the size of the stack and not the sizes of
both stacks, thus allowing a wider range
of user-applications with different require-
ments. 4tH variables

Variable Area

C variables

The Code Segment contains words. A
word is a structure that contains an un-
signed byte (the token) and a signed long

Read only variables

System variables System Area

integer (the argument). Only the argument

can be accessed by the 4tH programmer. l

He cannot change the program in memory, Pt stack

since we never really liked self-modifying

code. Stack Area

Data stack

True, this scheme has some redundancy,
but a more elaborate scheme means a more T
code to encode and decode the tokens and

arguments. That means the memory-space

we saved by compacting the program-code Figure 2.1: Integer segment layout
will make the compiler and interpreter less

compact. And it certainly won’t run any

faster!

The String Segment contains all string constants. The words which use strings contain an
offset to the ASCIIZ strings in the String Segment. The 4tH programmer can copy strings
from this segment, but cannot write any. Constants are constants.

Finally there is a chunk of memory the user can manipulate at will. It contains the TIB, the
PAD and all string variables (if any). The memory layout of the Character Segment looks
like figure 2.2.

CHAPTER 2. OVERVIEW 26

The 4tH programmer can store and fetch anything here.
Since 4tH uses some C-functions ASCIIZ strings are used.
The words that act on counted strings take the same param-

eters and deliver functionally the same results. User strings

File I/O is supported too in a more Forth-like way than
Forth itself. You can have six concurrently open files
and/or pipes. 4tH has threads too. A thread can be saved PAD
to disk and reloaded. The only restriction is that all files m—
are closed when the execution of a thread is suspended.

Figure 2.2: Character seg-
2.4.1 The 4tH language ment layout

A Forth programmer has to know how much address-units

a cell takes. Since every data-type in 4tH has its own

segment, the address-unit of a segment is always one, re-

gardless the data-type. Consequently, ANS- Forth words like ’CELLS’ and ‘CHARS’ are
’NOOP’s. Which fits 4tH nicely.

Although 4tH has different words for storing and fetching different data- types, most of its
vocabulary is still compatible with Forth. E.g. the word "C!" takes an address in the Char-
acter Segment and "!" takes an address in the Integer Segment. Since the Code Segment
and String Segment do not allow any writing, there is no need for such operators.

Each segment has its own allocation operators too. "VARIABLE’, ”ARRAY’ and "VALUE’
allocate space in the Integer Area. ’'STRING’ allocates space in the Character Area. Other
words like ”” and "CREATE’ have restricted functionality and compatibility with Forth.

4tH was originally loosely based on the Forth-79 standard, but now it supports most of the
CORE wordset of ANS-Forth. Note that compatibility never had the highest priority. 4tH
was designed to write applets, not to be the next "fully ANS-Forth compatible compiler
with a little difference". If that is what you want, 4tH is not for you.

2.4.2 H-code

Long before the dawn of the original IBM-XT there was a language called UCSD Pascal.
Like Forth, it was a compiler and an interpreter. In fact, it didn’t compile source into object-
code for some silicon-based processor. Instead it made P-code. So if you wanted to execute
it, you needed a P-code interpreter for your system.

Such an interpreter can run faster than an ordinary interpreter since it doesn’t interpret
source-statements with all of its symbolic labels intact, but optimized P-code. It seems
to have been discovered again, since Java and previous versions of Visual Basic work the
same way. Visual Basic hides the interpreter in a DLL, but basically it doesn’t work any
different.

The 4tH uses the same basic architecture. First the source is compiled into H-code. Then
the H-code interpreter is run. A token is a very simple structure. It’s got a single byte
instruction and an argument. Here’s a sample of disassembled H-code:

Addr| Opcode Operand Argument
62| cr 0
63| wvalue 2
64| +literal -1
65| dup 0
66| to 2

67| Obranch 62

CHAPTER 2. OVERVIEW 27

BTW, building a decompiler for tokenized code is quite simple. There is one for Visual Ba-
sic and it seems like one emerged for Java too. The H- code was the result after compiling
this little piece of source code:

cr begin times @ 1- dup times ! until

You can clearly see that everything is actually compiled. Flow-statements are compiled
into BRANCH and 0BRANCH instructions pointing to addresses in the Code Segment.

Compiled H-code can be used on
its own. It can be kept in mem-
ory, loaded, saved, decompiled
and executed. H-code is a combi- i
nation of the String Segment, the o
Code Segment and a header (fig- i
ure 2.3). The header contains all
the information to set up the run-
time environment and some in-
formation on the String- and the
Code Segments. The Integer Seg-
ment and the Character Segment
are created at runtime. You can
also force 4tH? to retain its Sym-
bol Table, so it can be used to re-
solve symbols when decompiling.

Hcode > Hcode header

@5 -~ ~w
® ao O
- 0Q ® ~+~ 3 —
- 1]
'
wm—vom—‘m:r(‘):&
'
—emEw @]

~3> 0o 3@Q@o0on
~ 3> o 3@ o »n

~ 3> 0o 3@ o »
o —o o o

Although speed was an issue et
when 4tH was designed and de-
veloped, it is beaten by some
other Forths. There are several
possible explanations.

Figure 2.3: Hcode structure

e 4tH uses 32 (or 64) bit numbers, while some Forths still use 16 bit numbers;

e 4tH checks all parameters, while other Forths depend on signals or don’t do any
checking at all;

¢ 4tH is written in C, while some other Forths are written in assembler.

When 4tH is compiled with a 32 (or 64) bit compiler it outruns Python, Ruby, Perl and most
other C-based Forths (upto 4 times) or has a comparable performance (with the possible
exception of GCC optimized Forth compilers). In real life applications the difference is
barely noticeable.

To make compiled H-code portable, a separate scheme was developed: the Hcode-eXecutable.
Or HX-file for short. It contains all the information in the header, a compacted Code Seg-
ment, the String Segment and some additional information on compatibility and integrity.
Numbers are stored in an architecture-independant way. Optionally, you can also save the
Character- and Integer Segments - but not the Symbol Table.

2.4.3 H-code compiler

The H-code compiler looks a lot like any conventional compiler or assembler. Basically
it is a simple one-pass compiler. In order to understand the workings of 4tH you have to
know that not all H-code instructions are equal:

2Use the *[NAMES]’ directive.

CHAPTER 2. OVERVIEW 28

¢ Immediate words (flow control, declarations, etc.)
¢ Predefined constants (addresses, aliases, etc.)

» Simple words (do not require an argument)

Symboltable entries (user-definitions)

To determine the initial size of both the Code Segment and the Symbol Table the source
is parsed first and the actual number of words counted. This determines the initial size of
the Code Segment with a high degree of accuracy, so extending the Code Segment is never
necessairy. After compilation the Code Segment will be shrunk to its actual size.

The parser can distinguish between directives and string constants. The size of the Symbol
Table is determined by simply counting all definitions. Every definition needs one Symbol
Table entry. That makes determining the size of the Symbol Table very easy.

During compilation all simple words are compiled into tokens without a valid argument.
When a definition is encountered, like a colon-definition or a variable-declaration, a symbol
is added to the symbol-table.

There are four compiler directives which determine how a number is interpreted. ’[BI-
NARYT interprets numbers as binary numbers, '[HEX]’ interprets them as hexadecimal
numbers. '[DECIMAL] and ’[OCTAL] are available too. The "simple words" "HEX,
"DECIMAL’ and "OCTAL’ only act during execution and do not determine how a number
is interpreted during compilation.

During compilation the compiler also resolves all flow words. It simply matches the cor-
rect instruction and enters the jump-address into the argument of the 'BRANCH’, *?DO’,
"LOOP’, *+LOOP’, "CALL’ or ’'0OBRANCH’ word. The way 4tH handles flow control is
almost completely identical to Forth.

It may sound strange, but colon-definitions are also treated like flow-words. The colon
simply compiles into a ’'BRANCH’ instruction that skips the colon definition.

When the user calls a colon definition, it simply compiles into a ’"CALL’ instruction that
puts the current address on the return-stack and jumps inside the colon definition, after the
"BRANCH’. The semi-colon works like a RETURN instruction that pops the return address
from the return-stack. Yes, like a subroutine in BASIC or assembler!

2.4.4 Error handling

When 4tH finds an error during compilation or execution it stops and sets the H-code mem-
ber ErrNo. It works like errno in C. You can optionally link in an array of error-messages.
ErrNo is an index to this array, which makes issuing the correct error message very simple.
The instruction pointer is frozen at the point where the error occured, so it is very easy to
find out where the error occured.

2.4.5 Interfacing with C

A minimal compiler would take only a few lines of C-code. The C-programmer can send
C-variables to the interpreter, just like strcalc ().

E.g. a compile takes a string-pointer as argument and returns a pointer to H-code:

object = comp_4th (source);

CHAPTER 2. OVERVIEW 29

Executing H-code is easy too:

ReturnVal = exec_4th (object, argc, argv, 3, Varl, Var2, Var3);

Which would preload variables Varl, Var2 and Var3. You must specify how many
variables are preloaded. Also argc and «xargv are available from the 4tH program.

The value returned by exec_4th () and stored into ReturnVval is the value of the 4tH
variable ’OUT’, which initially contains CELL_MIN. If an error occurs exec_4th () will
always return CELL_MIN, regardless the value stored in "OUT".

Chapter 3

Installation Guide

3.1 About this package

4tH will compile ordinary text-files (MS-DOS and Unix) as well as block-files produced by
the 4tH editor. The user-interface of this line-editor is highly compatible with conventional
Forth block-editors.

4tHs special architecture almost forces you to write "clean" code, so you will learn Forth
the proper way. This does not mean that you can’t write portable code with 4tH. In fact,
because Forth is so flexible you can usually write a small interface to your well-written
4tH-code in a matter of minutes.

You can use 4tH in virtually every environment, from Linux to MS-Windows. You don’t
even have to recompile your applications since 4tH uses a special executable format, that
is interpreted by the 4tH virtual machine.

3.1.1 Example code

There are a lot of example programs, written in 4tH. From line-editors and calculators
to adventure-games. Not all have been especially written for 4tH. There are quite a few
programs from the hand of people like Professor C.H. Ting and Leo Brodie that started
their existence as Forth-programs.

Most are available in source. That means they have the extension ".4¢h’. You can examine
or edit them like any other source-file. Source-files written with the 4tH editor get the
extension ".scr’. They can only be edited with the 4tH editor or other Forth blockfile editors.
Executables have the extension ".six’ (Hcode eXecutable).

3.1.2 Main program

You will find a binary program within this package called 4tH. You can copy this binary
to any directory. 4tH is a small development system by itself. When you start it, it will
automatically enter interactive mode and show you a menu not unlike early versions of
Turbo Pascal. You can edit, compile, run and debug programs from the 4tH prompt. Please
read chapter 4 for more details.

You can also use 4tH from the commandline:

30

CHAPTER 3. INSTALLATION GUIDE 31

4th <commands> <file> [file | argument .. argument]

It takes most combinations of these ten commands:

m enter interactive mode

e edit a 4tH screenfile

¢ load a sourcefile (.4th) and compile it

1 load an objectfile (.hx)

d decompile a 4tH program

g generate a C sourcefile (default: out.c)

s save a 4tH program (default: out.hx)

x execute a 4tH program

v enter verbose mode

q suppress copyright message

A few examples:

Note:

To compile a 4tH program and save the object code: 4th csv <source.4th>
[object.hx]

To compile a 4tH program and execute it: 4th cx <source.4th>

To decompile object code: 4th 1d <object.hx>

To convert object code to C source: 4th 1g <object.hx> [source.c]
To load and execute object code: 4th 1x <object.hx> [arguments]
To load and execute object code without arguments: 4th <object.hx>

To edit a 4tH screenfile: 4th e <source.scr>

To enter interactive mode: 4th m <source.scr>

To enter interactive mode (without loading a screenfile): 4th

don’t include the "[]" and "<>" in your commandline. They are just there to show

whether an argument is optional ([arg]) or mandatory (<arg>).

3.1.3 Unix package

It is not possible for us to provide Unix binaries for all possible platforms, not now and not
in the future, simply because we don’t have access to them all. Here is a list of the Unix
(like) platforms that are known to compile 4tH:

Intel - FreeBSD
Intel - Coherent

Intel - BeOS

CHAPTER 3. INSTALLATION GUIDE 32

* Intel - Plan9
* RS/6000 - AIX
e NeXT - NS
e Apple - OS/X
* Sun - Solaris
¢ ARM - RISC/OS
* ARM - Android
* Intel - Linux
e Zaurus - Linux
» Raspberry Pi - Linux
* Ben Nanonote - Linux
* Zipit Z2 - Linux
* Nokia N810 - Linux
* Apple - Linux
If your platform is not listed, give it a try anyway. The chances are it will compile flaw-

lessly, since we’ve never had a report of a Unix platform that refused to compile or run 4tH.
Please send us an email with your results, so we can add it (or remove it) from our list.

You have to compile 4tH yourself, which is not difficult if you read the "Developers Guide’.
Usually this will do the trick:

make
make install

If you have any special needs, feel free to edit the makefile.

3.1.3.1 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuff!

3.1.4 Linux package

You will find Linux binaries in this package. They will run under most modern Linux
distributions for Intel. If the Linux binary doesn’t run, you can easily recompile it. Just
enter:

make
make install

CHAPTER 3. INSTALLATION GUIDE 33

You don’t have to run ’./configure’. If you have a different environment or any special
needs, feel free to edit the makefile, e.g. compiling for the Zaurus means you have to add
the *-DZAURUS’ option.

You’ll also find some icons for KDE or GNOME and a 'man’ page. However, you have to
install them manually. If you want to embed 4tH in KDE or GNOME you have to do that
manually as well. Please consult your KDE or GNOME documentation.

You can place the 4tH executable any place you want. It doesn’t require any external files.

3.1.4.1 Copying the tarball to your platform

If you’re using an exotic platform like the ones listed here, you may experience some
problems getting the tarball onto your device. We will give you some directions on selected
platforms.

Ben Nanonote

The easiest way is to copy the tarball onto a micro-SD card and boot your Ben Nanonote.
You’ll find the tarball under /card. Copy it to the location of your choice and proceed as
usual.

If not, perform this procedure. First, be sure you have set the password of ’root” under your
Ben Nanonote. Second, you have to connect the Ben Nanonote to the USB port of your
host computer. Finally, enter the following commands (as root) on your host computer:

ifconfig usb0 192.168.254.100
scp <4tH tarball> root@192.168.254.101:~/

The 4tH tarball will end up in the SHOME directory of “root” on your Ben Nanonote.
Proceed as usual.

3.14.2 /etc/magic

If you want Linux to recognize your 4tH files, you have to add the following lines to your
/etc/magic file:

From The.Beez.speaks@gmail.com
These are the magic numbers for 4tH HX files

0 belong 0x01020400 4tH eXecutable
>9 leshort x \b, version %x

E.g. if you enter:
file editor.hx

It will respond:

editor.hx: 4tH eXecutable, version 364

N.B.: if you’re working on a 64 bit Operating System these values may be completely
different. You’l get the proper signature by submitting od -tx1l example.hx:

0000000 01 02 04 00 £ff £ff ££f 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes ”04”, ”64” and 03

CHAPTER 3. INSTALLATION GUIDE 34

3.1.4.3 Using binfmt_misc

There is a module in Linux that will allow you to execute 4tH programs from the prompt
without explicitly calling the 4tH interpreter. It is called ’binfmt_misc’. 4tH has built-in
support for this module. Just add the following lines to your *boot.local’! file:

insmod binfmt_misc

cd /proc/sys/fs/binfmt_misc

echo /:HX:M::\x01\x02\x04\x00\xff\xff\xff\x7f\x04\x64\x03\x08:
:/usr/local/bin/4thx:’ >register

If you use a kernel version later than 2.4.13 you have to add these lines:

insmod binfmt_misc

mount -t binfmt_misc none /proc/sys/fs/binfmt_misc

cd /proc/sys/fs/binfmt_misc

echo /:HX:M::\x01\x02\x04\x00\xff\xff\xEff\x7f\x04\x64\x03\x08:
:/usr/local/bin/4thx:’ >register

You can find out whether 4tH support has been properly installed by issuing:

cd /proc/sys/fs/binfmt_misc
cat HX

And Linux should answer:

enabled

interpreter /usr/local/bin/4thx
offset 0

magic 01020400fffff£f7£04640308

Finally, you should go to the directory where 4tH has been installed (usually /usr/local/bin)
and enter:

In -s 4th 4thx

Now, after you’ve compiled a program you should make it executable and it will run like it
is a native executable, e.g.:

4th cs asc2html.4th asc2html
chmod 755 asc2html
asc2html ascii7.4th ascii7.html

Note you have to be root in order to run some of these commands! N.B.: if you’re working
on a 64 bit Operating System these values may be completely different. You’l get the proper
signature by submitting od -tx1l example.hx:

0000000 01 02 04 00 f£f £f £f 7f 04 64 03 08 02 09 08 08

The relevant sequence should stop shortly after the bytes 04, 764" and ”03”.

'0n SuSE "boot.local’ is located in the /sbin/init.d directory.

CHAPTER 3. INSTALLATION GUIDE 35

3.1.4.4 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot
be found in the current directory, the compiler® will try to get it here. You can set this
environment variable in your .profile or .bashrc file. Simply login into your default

user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example your
default 4tH directory is /home/ joe/4th:

export DIR4ATH=/home/joe/4th/

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwill try toload /home/joe/4th-
/lib/anscore. 4th. Do not forget to add the trailing slash. If you do, it will not work

properly.

3.1.4.5 EDIT4TH environment variable
This variable is used by the 4tH executable to launch an external editor, e.g. vi, instead
of the built-in block editor. You can set this environment variable in your .profile or

.bashrc file. Simply login into your default user account and type:

cd
vi .profile

or:

cd
vi .bashrc

This will launch the editor and allow you to edit the appropriate file. In this example the
external editor is vi:

export EDIT4TH=vi

It works exactly the same as the familiar EDI TOR environment variable>.

3.1.4.6 Updating

Simply install the package. Unless you’ve used a different location or different options the
previous time, it will simply overwrite the previous executables. If you still have 4thd,
4thg, 4thx or 4thc somewhere on your drive, delete them. That’s ancient stuff!

That is: the compiler, not the editor or anything else.
3https://en.wikibooks.org/wiki/Guide_to_Unix/Environment_Variablcs#EDITOR

CHAPTER 3. INSTALLATION GUIDE 36

3.1.5 MS-DOS package

The "4th.exe" that is included in the MS-DOS package is a 32-bit MS-DOS version of the
main Unix utility. It will only run on 80386 class machines and up. It allows you to compile
and run very large 4tH programs. It requires CWSDPMI.EXE somewhere in your path. It
is also available as "4th86.exe", which will run on any IBM-PC with 256 KB memory. This
version is slower and you may experience some memory restrictions.

3.1.5.1 DIR4TH environment variable

This variable is used to indicate where 4tHs default directory is. If a sourcefile cannot be
found in the current directory, the compiler* will try to get it here. You can set this envi-
ronment variable in your aut oexec . bat file. In this example your default 4tH directory
isC:\4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwilltrytoload C:\4th\-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

3.1.5.2 EDIT4TH environment variable

This variable is used to indicate which external editor the 4tH executable should load if you
do not want to use its built-in block editor. You can set this environment variable in your
autoexec.bat file. In this example you’re using edit:

set EDIT4TH=edit

If the external editor is not in the PATH, you should provide the entire path.

3.1.5.3 Updating

Simply install the package. Unless you’ve used a different location or different options
the previous time, it will simply overwrite the previous executables. If you still have
4thd.com, 4thg.com, 4thx.com or 4thc.com somewhere on your drive, delete
them. That’s ancient stuff!

3.1.6 MS-Windows package

Run "setup.exe" to install the package. It runs with Windows 95 OSR2 and up, Windows
NT 4.0, Windows 2000, Windows XP, Windows Vista, Windows 7 and Windows 10.

You can launch Explorer and double-click an HX-file. Windows will complain it doesn’t
recognize the file and tell you what to do. Browse to "4th.exe" and select it. After that you
can click on an HX-file and it will be executed. You can even add HX-files to your desktop
where they will start and run like ordinary Windows applications.

This is a true 32-bit version, so it does take long filenames, but you can’t run it with Win-
dows V3.x and early versions of Windows 95. It is a console application, so you’ll need
an MS-DOS box to run and use it. Note that it will exit immediately once a program has
halted. We recommend you run 4tH from the MS-DOS prompt when you’re using 4tH as
a development environment.

4That is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 37

3.1.6.1 Environment variables

The DIRATH variable is used to indicate where 4tHs default directory is. If a sourcefile
cannot be found in the current directory, the compiler® will try to get it here. In this example
your default 4tH directory is C: \4th:

set DIR4TH=C:\4th\

If 4tH is unable to find a sourcefile, e.g. 1ib/anscore.4th,itwilltrytoload C:\4th\-
lib\anscore.4th. Do not forget to add the trailing backslash. If you do, it will not
work properly.

The EDIT4TH variable is used to indicate which external editor the 4tH executable should
load if you do not want to use its built-in block editor. In this example you’re using
notepad:

set EDIT4TH=notepad

If the external editor is not in the PATH, you should provide the entire path.

MS-Windows 9x While it is possible to set environment variables in the same way as for
MS-DOS by editing aut oexec .bat, itis easier touse msconfig. Firstrunmsconfig
from the task bar by selecting ”Run ™.

Select the "Autoexec.bat" pane, then go to the bottom of the window, select the last entry
and click the "New" button. A small input window appears below the last entry, and in this
you should type a new entry with the exact syntax as shown in the example above. Then
click "OK" and a small pen appears against the entry, indicating that aut oexec.bat will
be modified. You may have to reboot afterwards.

MS-Windows NT+ Click on the "My computer” icon or the ”’Start” menu, then click on
the ”Control panel”. Click on the "System" icon to get the "System Properties" dialog box.
For Windows NT+ use the "Environment" tab instead of the "Advanced" tab. Click on the
"Environment Variables" button and select "New”. Enter the DIR4TH and its value in the
boxes and then click "OK". You can repeat the procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

MS-Windows 10 Open the Start Search, type in “env” and choose “Edit the system en-
vironment variables”. Click on the "Environment Variables..." button and select "New”.
Enter the DIR4TH and its value in the boxes and then click "OK". You can repeat the
procedure for EDIT4TH if you wish.

If there are several users on the PC, it is probably better to set the variables as "System
variables", rather than "User variables" since they will then automatically be accessible for
all users. You will need to have Administrator rights to do this.

SThat is: the compiler, not the editor or anything else.

CHAPTER 3. INSTALLATION GUIDE 38

3.1.6.2 Updating

Be sure to properly uninstall the previous package before installing the new one. If you
don’t it may suggest to overwrite the package and simply refresh the group. Be sure the
installation is verbatim. If there are any changes, the uninstaller may refuse to uninstall the
package.

3.2 Setting up your working directory

The best thing to do is to create a directory under your home directory. In Windows, your
home directory is called My documents, in Unix-like environments simply type ’cd’
and you’re there.

The rest largely depends whether you are the only one developing 4tH programs on your
system or whether you want a system wide installation. If you are the only one develop-
ing programs you could create a 1ib subdirectory and copy all library files there. Your
DIR4TH environment variable can now simply point at your own 4tH directory.

If you want a system wide installation or your Linux distribution already installed the li-
brary files for you, the smartest thing is to let your DIR4TH environment variable point to
the 4tH system directory, e.g. /usr/share/4th or C:\Program files\4tH. Do
not forget to add the trailing slash when setting the your DIR4TH environment variable.

Most people find it a lot easier to use 4tH from the prompt, so if you want to start a session,
start up your favorite command line shell and navigate manually to your personal 4tH
directory. When you just want to run a 4tH program, it depends on whether you want to
run it as a script, a bytecode image, a shell script or a native executable. Please consult
either your Operating System manual or the appropriate sections of this document.

3.3 Now what?

After you’ve installed and played around with the utilities, we suggest you either click the
4tH icon on your desktop or start an interactive session by entering:

4th m sessionl.scr

And start reading chapter 6, the Primer. When you’ve thoroughly read and understood the
very first section you’re ready to go on. Start up your favourite editor (or use the built-in
editor if you don’t have a favorite one) and make your own very first 4tH program using
chapter 4.

If you encounter an error during compilation or execution, refer to chapter 24, the ’Errors
Guide’ for a detailled description what it means, what probable causes are and how you
can fix it.

3.4 Pedigree

4tH is basically an original work. However, some concepts have been derived from the
work of other, much smarter people.

* The pictured numeric output and flow-control routines are based on Abersoft Forth.

CHAPTER 3. INSTALLATION GUIDE 39

* The exception handler is based on the dpANS-6 implementation.
* The enumerations are based on the Swift-Forth implementation.

* The structures are based on the GForth implementation and suggested by Stephen
Pelc.

e The ’ASSERT(’ and ’)” words are based on an idea implemented in GForth.

* The implementation of '[DECIMALY]’, ’[HEX]’, ’[OCTAL]” and ’[BINARY]" was
suggested by William Tanksley.

* The implementation of *:REDO’ and "'DOES>’ was suggested by Astrobe.

e The implementation of unions was suggested by Tim Trussel and Bruce McFarlane.
* The binding of the Symbol Table into the 4tH structure was suggested by Ron Aaron.
* The HX-format was suggested by Mikael Cardell.

4tH was discussed in Volume XVIII, Number 3 of Forth Dimensions. Thank you, Marlin
Ouverson for giving me that opportunity.

3.5 Contributors

You may get the suggestion that I did all this myself, but that is hardly true:

Will Baden 4tH to ANS-Forth interface;

G.B. Stott 4tH Maketfile;

AltLinux team Shared libraries;

Ed ANS-Forth compatible floating point I/O libraries;
Bill Cook George Marsaglia random number libraries;

David Johnson Zenfloat floating point, Zenfloat SQRT, Gem4tH, Portable Bitmap graph-
ics, Turtle graphics, 3D plotting, infix formula translation, selected li-
brary members and example programs.

Furthermore, I’d like to thank all those people who have helped me to port 4tH to different
machines, expecially Wim Slangewal, Zbigniew, Ron K. Jeffries, Rubén Berenguel and
Greg Schmidt. Finally, I humbly apologize to all those who have been forgotten in the
course of 4tH’s 25+ years history or whose contributions have been superseded by other
developments.

3.6 Questions

We tried to provide you with all the documentation you’ll probably ever need. That doesn’t
mean that you’ll never have any questions. NEVER EMAIL THE PEOPLE WHOSE SITE
YOU GOT THIS FROM! THEY DON’T KNOW EITHER! INSTEAD, MAIL TO:

the.beez.speaks@gmail.com

You’ll usually get fast answers, although when your question is very complex we’ll proba-
bly give you just some general directions. We have to stress that any comment is welcome,
always.

CHAPTER 3. INSTALLATION GUIDE 40

3.6.1 4tH website
You can visit our website, which is dedicated to 4tH:

http://thebeez.home.xs4all.nl/4tH/

3.6.2 4tH Google group

We’ve got a Google group for discussions about 4tH. You will find all the latest information
there, including additions and bugfixes. If you want to interact with other 4tH users, we
recommend you subscribe to this group. You will also have to become a Google member
if you are not already, e.g. when you already have a gmail account:

http://groups.google.com/group/4th-compiler

Important! Your posts will not be accepted by the server if you don’t subscribe first! Your
first messages will be moderated.

3.6.2.1 Conditions of use

This group has been created as a service to, and in support of, the 4tH (and Forth) commu-
nity. As in most discussion groups, there are a few rules to ensure the survivability of the
group for the future.

1. This group is for discussions of 4tH problems, 4tH questions and answers. It is not
to be used for non-4tH discussions.

2. This is not an 4tH advocacy group. Stick to 4tH questions and problem-solving or
move your discussion to an appropriate channel. i.e. alternative site or private e-mail.

3. Flames, insults, foul language will not be tolerated. You will be unsubscribed and
barred from re-subscribing under your present e-mail address.

3.6.2.2 What to discuss?

Well, Problems, wishes, needs, solutions (how you did something) basically anything 4tH
related.

3.6.3 Newsgroup

There is no special newsgroup for 4tH. However, comp.lang.forth will prove to be able to
answer most of your questions.

Chapter 4

A guided tour

4.1 4tH interactive

4tH’s interactive mode is fully compatible with even the most ancient versions, so you can
continue to use all your external IDE’s and script files. The interactive mode is especially
useful when you are using an environment where other tools are not available or impossible
to use. This document shows you how to use interactive mode and get the most out of it.

Note we assume you have fully installed 4tH according to the instructions, including setting
the DIR4 TH environment variable. If you haven’t you may not be able to complete this tour
due to unexpected errors.

4.2 Starting up 4tH

You can enter 4tH’s interactive mode by just clicking the icon (when you are using MS-
Windows) or by issuing this command on the Unix or MS-DOS commandline:

4th

If you’re using a recent version of Linux, you may want to use the r 1wrap utility! to make
your life easier, especially when editing:

rlwrap 4th

4tH will respond by showing you this screen:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

This is the main menu. It is slightly reminiscent to the earlier versions of Turbo Pascal. At
the bottom is the prompt. Just press the appropriate key and hit enter, e.g. "S", which stands
for the name of the screenfile. 4tH will now prompt you for the name of the screenfile. Note
that 4tH is not case sensitive, so both "s" and "S" will do.

Tt provides persistent history, completion and line editing using the cursor keys. Issue: sudo apt
install rlwrap to install. See also: https://github.com/hanslub42/rlwrap

41

CHAPTER 4. A GUIDED TOUR 42
4.3 Running a program

We assume you’ve installed 4tH according to the instructions”. If not, this might not work.
Now press ’S” and hit enter. 4tH will prompt you for the name of a screenfile:

Screen file name:

Answer by typing “examples/romans.scr’” and hit enter. 4tH will return to the menu:

Screen file name: examples/romans.scr

(S)creen file: examples/romans.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

Now hit "R” and press enter. What now appears is your program that is actually running:

>r
Enter number: 2005
Roman number: MMV

After the program has ended, you will return to the menu. Well, that wasn’t too hard, was
it? You can quit 4tH by pressing ’q” and hitting the enter key.

4.4 Starting an editing session

93 99

After we’ve started 4tH again, we enter the editor mode by typing “e” and hitting enter.
Ignore any file opening errors, you’re fine. The "OK” prompt shows you you’re now in the
editor. Now type:

0 clear

This will erase the first screen and select it for editing. 4tH’s editor is a typical Forth editor.
Forth organizes its mass storage into "screens" of 1024 characters. Forth may have one

screen in memory at a time for storing text. The screens are numbered, starting with screen
0.

Each screen is organized as 16 lines with 64 characters*. The Forth screens are merely an
arrangement of virtual memory and do not correspond to the screen format of the target
machine.

Depending on memory model and operating system, you have either 28, 32 or 64 screens
available. This will be sufficient in most situations. These screens correspond to a region
in memory, which acts like a RAM drive.

The actual editing is done in an area that is called the *workspace’. With the word ’clear’
you wipe all information in the workspace. With the word ’list’ you can select a certain
screen for editing and load its information from the RAM disk into the workspace. The

CHAPTER 4. A GUIDED TOUR 43

Screen 1
flush a write a
Workspace Screen 2 File
g list < (editor)
Y
Screen n

Figure 4.1: Editor architecture

figure below shows you how to transfer information between the screenfile, the RAM disk
and the workspace (figure 4.1).

When you enter the editor the file is automatically loaded into the RAM disk. With ’list’
you transfer the source from a screen in the RAM disk into the workspace. Since we started
a new file (that’s why you got the error message) all screens are empty. To make absolutely
sure a screen is fit to receive new code we cleared screen 0 and selected it for editing. You

93 99

can quit the editor by pressing ”’q” and hitting the enter key. This will discard any changes.

95 99

You can quit 4tH by pressing ”q” again and hitting the enter key.

4.5 Writing your first 4tH program

99,99
S

After we’ve started 4tH again, we start by giving our new program a name. Press and
enter "hello.scr”. Now we’re going to enter the source text, so we start up the editor by

pressing “e” (you know by now you have to press the enter key afterwards). Again, ignore
any file opening errors. Then we select screen O for editing by entering:

0 clear

If you want to know what you’ve entered so far you can list the editing screen by entering:

The editor will now show you a full listing:

Scr # 0
0
1
2

2That means you’ve installed 4tH using make install or - if you used a binary package - placed all the
executables and libraries in their proper directories.

3This works for both Windows and Unix type Operating Systems. Note that quotes are simply there to separate
what you have to type at the prompt from the rest of the text. Don’t enter them.

4Except when you’re working with a small screens like the Zaurus or the Ben Nanonote. These have typically
8 lines with 32 character screens.

CHAPTER 4. A GUIDED TOUR 44

O J o U bW

11
12
13
14
15

~ 0 OK

The first line will tell you which screen you’re working on, which is screen 0. Then all
sixteen lines are listed, all blank of course. Finally it will show you the current line, which
is line 0. The ”*” is the cursor, which is at the beginning of the line. You can move the
cursor around with the ”m” command. Try:

10 m

The editor will respond with:

~ 0 OK

And shows you this way that the cursor has moved 10 positions. If you want to move the
cursor backwards, you can do that too. Just enter a negative value, like:

-5m

And the cursor will move back five positions:

” 0 OK

If you enter a larger value, that is perfectly acceptable too:

128 m

Note that every line is 64 characters long, so the editor will tell you you’ve just moved to
line 2:

Don’t be afraid that you’ll do something wrong and lose your source. Note that this is 4tH,
not Forth. If you try something funny like entering a very large value, the editor will just
issue an error message:

1024 m
Off screen OK

CHAPTER 4. A GUIDED TOUR 45

You just tried to go beyond the workspace and the editor won’t allow you to do that. Okay,
we’ve moved around enough. How about writing that program? After all that moving
around, let’s start by doing something sane:

top

93199

That moves the cursor to its "home” position. You can enter text with the ”p” command,
which stands for "PUT”. Just provide the editor with the appropriate linenumber and the
text:

0 p ."Hello world!" cr

Let’s list our screen:

1

Scr # 0
0 ."Hello world!" cr

O J oUW N

9
10
11
12
13
14
15

~."Hello world!" cr 0 OK

That’s it. That’s it? What about all that red tape like “Program Hello” or int main()”,
opening parenthesis or closing braces? Hey, this is Forth, not C or something. You’ve just
told the compiler it has to print the text "Hello world!” and write a newline. Isn’t that what
you wanted?

According to figure 4.1, we first have to save the workspace to the RAM disk by entering
“flush”, then save the whole shebang to disk by entering “write” and subsequently leave

33 99

the editor by entering ’q”.

Although perfectly correct, it is a lot of typing for just saving and exiting. You can do that
a lot faster by just entering ”wq”, which stands for "Write and Quit”:

wq

Now we’re back in the main menu and we want to see our program run. Just hit "R” and
press enter:

r

SIf you are not familiar with Forth and want to learn it, please read the primer. Everything you want to know
is explained there in detail.

CHAPTER 4. A GUIDED TOUR 46

Don’t we have to compile it first? Sure, but 4tH will notice your program hasn’t been com-
piled yet and will compile it automatically for you. You’ll probably get an error message
like this:

Compiling; Word 0O: Undefined name

Then you know you’ve just made a classical beginners error: there is no space between . "
and the text. You’ll have to go back to the editor to correct it. Reload screen 0 by entering:

e
0 list

Scr # 0
0 ."Hello world!" cr

Now let’s see where our cursor is:

0 m
~."Hello world!" cr 0 OK
Now we know we have to move our cursor two positions and enter a space. Entering text at

the cursor position is done by the ”’c” command, which stands for "COPY”. Note that you
have to add a space after each command, so adding a space at the cursor position is done

39 9%

by entering a ’c” with two spaces:

2 m

.""Hello world!" cr 0 OK
." "Hello world!" cr 0 OK

Well, did that work out for you? Or were you a naughty boy and forgot to enter a ’c” with
two spaces? If so, just do it again - but this time right. A ”c” with two spaces will do the
trick.

Now we can exit the editor again and rerun our program. Yes, 4tH will know you’ve
changed the text and recompile your program automatically:
wq

(S)creen file: new.scr

CHAPTER 4. A GUIDED TOUR 47

(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>r

Hello world!

That’s it! You’ve just successfully entered, compiled and ran your very first 4tH program!

53 99

You can quit 4tH by pressing ”q” and hitting the enter key.

4.6 A more complex program

Note that this is not a tutorial on Forth. If you do not know the language you’ll probably
won’t understand the statements we’re going to enter. You don’t have to, but if you need to
please refer to our highly acclaimed 4tH primer.

Okay, let’s presume you’re looking at your 4tH prompt. We want to write a program which
converts Unix ASCII files to DOS ASCII files. Unix ASCII files use a single linefeed to
signify the end of a line while DOS ASCII files use an carriage return/linefeed pair for that

purpose.

First, we need to name our program, so we press ’s” to enter the name of the screen file.

99 .99

We’ll call it “convert.scr”. Then we enter the editor by pressing “’e” and are greeted by the
”OK” prompt. First we’ll define a word (that’s what a subroutine is called in Forth) that
converts a file. You type the commands, which are bold:

0 clear

OK

0 p : ProcessFile

OK

lp begin

OK

2 p refill

OK

3 p while

OK

4 p 0 parse-word
OK

5p type 13 emit 10 emit
OK

6 p repeat

OK

Tp i

OK

Note that 4tH confirms you after each line that everything is "OK”, but we left those mes-
sages out. When we list our program it looks like this:

1
Scr #
0 : ProcessFile
1 begin
2 refill
3 while
4 0 parse-word
5 type 13 emit 10 emit

CHAPTER 4. A GUIDED TOUR 48

repeat

A

ProcessFile 0 OK

It is a good custom to start each screen with a comment line, so others will know what
we’ve been doing. However, line 0 is already taken. To insert a blank line we use the ”’s”
command, which stands for "SPREAD”. All lines following it will move down. If you
happen to use line 15 you’re in trouble since that one will be lost:

0s0s 1

Scr # 0

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit
8 repeat

~ 0 OK

Yes, as long as you’re not entering a command with a trailing text parameter, you can enter
multiple commands on a single line. So this one tells the editor ”spread at line 0, spread at
line 0, list”. Now we’re going to enter our comment line:

0 p (Conversion from UNIX ASCII files to DOS ASCII files - I)

OK
1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)

1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11

12

13

14

CHAPTER 4. A GUIDED TOUR 49

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

That will do nicely. Although this word will do the job, we still have to open the input- and
the output file. Since we want to test our program quickly we make a quick and dirty word
that will do the job:

11 p : test s" code.txt" inpud open s" out.txt" outpud open
12 p error? rot error? rot or abort" Error!" use use;
13 p ttest ProcessFile

wq

99 99

When we try to compile this program by entering c”, it doesn’t work:

Compiling; Word 16: Undefined name

Oops, we’ve obviously made an error, but where? Word 16? Where is word 16? We can
find that out by decompiling the program and see where it went wrong. Just press ’d”:

>d

4tH message: Undefined name at word 16
Object size: 16 words

String size: 9 chars

Variables : 0 cells
Strings : 0 chars
Symbols : 0 names
Reliable : No
Addr| Opcode Operand Argument
71 type 0
8| literal 13
9| emit 0
10| literal 10
11| emit 0
12| branch 0
13| exit 0
14| branch 0
151 s" 0 code.txt

The last thing it compiled was the start of the "TEST’ definition. It must have gone wrong

right after that one. So we go back to the editor by pressing ’e” and find out. Sure, ”inpud”
must be “input”. We can even find out it we made more errors like this:

f pud
: test s" code.txt" inpud” open s" out.txt" outpud open 11 OK
n
test s" code.txt" inpud open s" out.txt" outpud” open 11 OK
n

Not found OK

And yes, we did. On line eleven to be exact. Twice. With the ”f” command (which stand
for "FIND”’) we can find a string. By entering "n” (which stands for "NEXT"”’) we can find
the same text again. Now we have to correct it. We’ll get back to the top of the screen and
find the offending word:

CHAPTER 4. A GUIDED TOUR 50

top £ pud

test s" code.txt" inpud” open s" out.txt" outpud open 11 OK

Note that the cursor is positioned at the end of “inpud”. We only have to wipe one character
and insert the correct one:

lwet
test s" code.txt" inpu” open s" out.txt" outpud open 11
test s" code.txt" input” open s" out.txt" outpud open 11 OK

Of course, we could destructively backup the cursor by one position by issuing 1 w” and
then enter the ’t” at the cursor position by using the ’c” command. However, we won’t do
that, since there is a quicker way:

x pud

test s" code.txt" input open s" out.txt" out” open 11 OK
c put

test s" code.txt" input open s" out.txt" output” open 11 OK

The ”x” command works very much like ’f”, but it does not only find the string, it also
deletes it. Still, there are other errors left in the source:

f test

ttest” ProcessFile 13 OK
b

t~test ProcessFile 13 OK
1w

“test ProcessFile 13 OK

Yes, “test” has an extra ’t”. So we find the next occurrance of ”test”. Note that a search is
always performed from the cursor position, so the definition of "test” is not found. The ”b”
command will move the cursor backwards up to the point where “’test” begins and we can
delete the superfluous ”t” with the command 1 w”. The final typo we have to correct is a
lacking space between “use” and the semicolon. That can be fixed pretty quickly:

top f use

error? rot error? rot or abort" Error!" use” use; 12 OK
n

error? rot error? rot or abort" Error!" use use”; 12 OK
till ;

error? rot error? rot or abort" Error!" use use” 12 OK

The till” command deletes everything from the current cursor position (indicated by the
caret, remember?) to the end of the following string. In this case the semicolon but you can
use any string. Finally, we copy the correct string into the text, which is a space followed by
a semicolon. Don’t forget you need an extra space to separate ’c” from the space and the
semi-colon following it. So that is ”’c”, followed by fwo spaces and finally a semi-colon:

CHAPTER 4. A GUIDED TOUR 51

c

error? rot error? rot or abort" Error!" use use ;" 12 OK

If that didn’t work, you didn’t add two spaces as indicated. Four errors corrected. Let’s
write the screen back to RAM disk and see what we have got:

flush 1
Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)

1

2 : ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9

10

11 : test s" code.txt" input open s" out.txt" output open

12 error? rot error? rot or abort" Error!" use use ;

13 test ProcessFile

14

15

error? rot error? rot or abort" Error!" use use ;" 12 OK

Seems to be okay. Let’s go back to the main 4tH screen by issuing the "wq” command. We

93 99

recompile the source by pressing ’c” and presto: we got a program!

But first we have to stress that you don’t have to use 4tHs editor. You can use any editor
you like. Shame you’ve already entered and saved your source. But there is a way out. And

99 .99

you don’t have to go too far. Just start up the editor again by entering e’ and enter:

OK
export convert.4th
OK

You’ll find an ordinary file called “convert.4th” in your working directory hat you can
modify with any text editor you like. You’re still in the editor now, of course. We assume

you know by now how to get out of here. Ok, you win: type ”q”, press enter, type ~’q
again, press enter.

4.7 Advanced features

Important!

We assume you have fully and correctly in-
stalled 4tH. If you haven’t you may not be
able to complete this tour due to unexpected
erTors.

What we actually want is a program we can run from the prompt, something like:

convert in.txt out.txt

CHAPTER 4. A GUIDED TOUR 52

And if you do not provide the required parameters it has to issue an error message:

Usage: convert infile outfile

We will get there, but we still have some coding to do. First of all, we have to structure our
program. We already have a working word® called ”ProcessFile”. It seems like a good idea
to define two others, one that opens the files and one that closes the files. And we have to
get rid of our “’test” word.

93,99 99 .99

So let’s start 4tH, enter “convert.scr” after issuing ”’s” and fire up the editor by issuing “e”.
You type the commands, which are bold:

OK
0 list
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9
10
11 : test s" code.txt" input open s" out.txt" output open

12 error? rot error? rot or abort" Error!" use use ;
13 test ProcessFile

14
15
OK
11 d1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9 ;
10
11 error? rot error? rot or abort" Error!" use use ;
12 test ProcessFile
13
14
15
~(Conversion from UNIX ASCII files to DOS ASCII files - I) 0 OK

You can remove lines with the ”’d” command, which stands for "DELETE”. This will re-
move the line and move all remaining lines up. Line 15 becomes blank. But there is another
way to get rid of unwanted lines:

ll1 el

A subroutine in Forth is called a ”word”, remember?

CHAPTER 4. A GUIDED TOUR

Scr # 0

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)
1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit
8 repeat

9 ;

10

11

12 test ProcessFile

13

14

15

~(Conversion from UNIX ASCII files to DOS ASCII files - I)

53

0 OK

The ”e” command, which stands for "ERASE”, will leave every line at exactly the same

position. It just blanks that line. Let’s finish this:

11 p : Convert OpenFiles ProcessFile ;

OK
12 e
OK
13 p Convert
OK
1
Scr # 0
0 (Conversion from UNIX ASCII files to DOS ASCII files - 1I)
1
2 ProcessFile
3 begin
4 refill
5 while
6 0 parse-word
7 type 13 emit 10 emit
8 repeat
9
10
11 : Convert OpenFiles ProcessFile ;
12
13 Convert
14
15

~(Conversion from UNIX ASCII files to DOS ASCII files - I)

0 OK

Seems neat enough, but we still haven’t got a "OpenFiles” word. This has to be defined
before ”Convert”, but do we have still have room for that on screen 0? No, we haven’t.
Fortunately, you can insert screens with the 4tH editor’. Don’t forget to flush. That is not
only a good practice when you’ve visited the bathroom, but also when you’re working with

a Forth editor:

flush 0 insert
OK

We start our screen with a comment of course. We’ll use the same comment as in our

previous screen, so why not copy it?

"Note that this command is usually not available in other Forth editors!

CHAPTER 4. A GUIDED TOUR 54
1 1list 0 h 0 1list O r

That produced a lot of output! What happened here? First, we switched to screen 1, which
is our previous screen 0. Then we used the ”h”® command, which copied line 0 into PAD.
PAD is a buffer, which is able to hold the contents of a single line. Note that line O of screen
1 remains intact. It is only copied.

9999

Then we switched back to screen O and issued the ’r” command, which stands for "RE-
PLACE”. It replaces whatever is on line 0 with the contents of the PAD. Finally, we listed
the screen. Let’s play around a little with this PAD thing:

lr1lt

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 1 OK

Yes, the line we copied was still in PAD! We also used the command “’t” to "TYPE” line 1.
This command is very similar to ’h”, since it copies line 1 to PAD. But is also moves the
cursor to the beginning of the line and types it. Let’s see if you can explain this one:

l1d2r2t

~(Conversion from UNIX ASCII files to DOS ASCII files - I) 2 OK

9999

Sure, the ”’d” command not only deletes the line, it also copies it to PAD. So when the ’r
command is issued, it replaces line 2 with the contents of the line we deleted. Let’s do one
final test:

0il

Scr # 0
(Conversion from UNIX ASCII files to DOS ASCII files - I)
(Conversion from UNIX ASCII files to DOS ASCII files - I)

(Conversion from UNIX ASCII files to DOS ASCII files - I)

N 2 OK

99599

Here we used the ”i” command, which stands for “INSERT”. It inserted the contents of
PAD at line 0 and moved all the remaining lines down. Note that the cursor didn’t move a
bit. That’s enough play for one day, let’s get back to work:

le 3e2p : OpenFile

OK

3p args 2dup 2>r rot open error?
OK

81n case you wondered, ’h” stands for "THOLD”.

CHAPTER 4. A GUIDED TOUR 55

4 p
OK
5p
OK
6 p
OK
7p
OK
8 p
OK
9p
OK
1

Sc

0 J o U b w N OR

i el el
U WN oW

A

if
drop ." Cannot open " 2r> type cr abort
else
dup use 2r> 2drop
then
;
0
(Conversion from UNIX ASCII files to DOS ASCII files - I)
OpenFile
args 2dup 2>r rot open error?
if
drop ." Cannot open " 2r> type cr abort
else
dup use 2r> 2drop
then
OpenFile 2 OK

Hmm, it seems like we’re going to need another screen. It is always wise to leave some
room for future extensions, so this screen is full enough. But don’t forget the commentline.
We don’t want to enter that one again, so let’s store it in PAD:

O h flush 1 insert 0 r 1

Sc

O J oy Ul W OR

e e el el
g W oW

#

(

1
Convert UNIX ASCII files to DOS ASCII files - 1I)

2 OK

Hold the line in PAD, flush the screen, insert screen 1 and replace line O with the contents
in PAD. But the commentline is not entirely correct, so let’s fix it:

top x I)

CHAPTER 4. A GUIDED TOUR

(Convert UNIX ASCII files to DOS ASCII files - *
c II)

(Convert UNIX ASCII files to DOS ASCII files - II)"

56

OK

OK

The cursor is still on line 2, so we move it to the top again. Then we find and delete T)”.
Finally we copy in "II)”. We can do that since the cursor is at the right position. Now let’s
enter our final word:

2 p OpenFiles
OK
3 p argn 3 < abort" Usage: convert infile outfile"
OK
4 p input 1 OpenFile
OK
5p output 2 Openfile
OK
6p;
OK
1
Scr # 1

0 (Conversion from UNIX ASCII files to DOS ASCII files - II)

1

2 OpenFiles

3 argn 3 < abort" Usage: convert infile outfile"

4 input 1 OpenFile

5 output 2 Openfile

6 ;

9

8

9

10

11

12

13

14

15

(Conversion from UNIX ASCII files to DOS ASCII files - II)"

Almost there! We just have to fix the commentline in screen 2:

flush 2 list

Scr # 2

0 (Conversion from UNIX ASCII files to DOS ASCII files - I)

1

2 ProcessFile

3 begin

4 refill

5 while

6 0 parse-word

7 type 13 emit 10 emit

8 repeat

9 ;

10

11 Convert OpenFiles ProcessFile ;

12

13 Convert

14

15
OK

top x I)

OK

CHAPTER 4. A GUIDED TOUR 57

(Convert UNIX ASCII files to DOS ASCII files - * 0 OK
c III)
(Convert UNIX ASCII files to DOS ASCII files - III)" 0 OK

The current screen is flushed, then screen 2 is listed. We position the cursor at the top, find
and delete ’I)” and copy “III)” in at the cursor position. Done! Let’s leave the editor and
see what we have got:

wq
It compiles cleanly (type “’c” in the menu) and when we run it (type “r” in the menu) it
answers:

Usage: convert infile outfile

Sure, but what we actually want is to convert a file. Well, you can do that too without
leaving 4tH. Just press ”a” and enter the filenames, just like you would do at the prompt.
In this example we have chosen “code.txt” and “out.txt” - which probably aren’t there in
your PC, but you catch my drift:

(S)creen file: convert.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G) enerate (B)uild (D)ecompile
>a

Arguments: code.txt out.txt

9999

When you press ’r”” now, the arguments entered will be passed to your 4tH program, just

like they would at the prompt. To clear the arguments, press ”a” again and just hit enter
when prompted for arguments.

EIPRT)

But how do we run it from the prompt? Easy, just press ”0” and enter "convert.hx” at the
prompt. Now press ’b”:

(S)creen file: convert.scr
(O)bject file: convert.hx

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>b

If 4tH has nothing to complain about, it doesn’t complain, so you can safely assume that
everything is okay. Now we can go to the prompt® by pressing ”q” and run it:

user@linux:~ > 4th lxq convert.hx code.txt out.txt
Cannot open code.txt
user@linux:~ >

9Windows users can do this by starting an MS-DOS session.

CHAPTER 4. A GUIDED TOUR 58

That was to be expected. It is always a good idea to test all exceptions as well. There
could be a bug in that code too. Well, it seems to work.. But what we really want is a
standalone program. One that can be run without invoking 4tH and shared with our friends
and families. Why this ”.hx” thing? HX-files do have their merits. First of all, it is very
small, a little over 150 bytes. But most importantly, you can take this file and run it on
a Windows NT, MS-DOS or other Unix machine without modification or recompilation,

provided a 4tH is available for that platform'?,

If you still want a standalone program, startup 4tH, press ”’s” and enter “convert.scr” at the
prompt. Then press "0” and enter “convert.c”. Isn’t that the extension of a C-program?

Yes, it is. 4tH is able to generate C code. Just press ’g” and you’ve created a C program.
You don’t even have to know C.

If you know how to compile a C program that’s more than enough'!. In case you want to
try, you should have installed the 4tH library and header files, since those are needed to
compile “convert.c”!?.

Is that all? No, that’s not all 4tH can do. We have a few surprises left.

4.8 Suspending a program

We’ve entered this program:

Scr # 0
0 ." Is everybody in? The ceremony is about to begin.." cr
1 44596 36 base !
2 pause
3 ." Wake up! Do you remember where it was?" cr
4 ." Has this dream stopped? " . cr
5
6
7
8
9
10
11
12
13
14
15

The first line is simply a string we print to screen. The next line, we push a number on the
stack and we change the radix. Then we go to sleep. After that, we wake up again, print a
few lines and retrieve the number on the stack. Let’s quit the editor by pressing “wq” and
run it:

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G) enerate (B)uild (D)ecompile
>r

1032 bit platforms and 64 bit platforms are usually not interchangeable.

Windows users need to consult the documentation that came with their C compiler. MS-DOS users are
encouraged to use the "'DJGPP’ compiler, which is free. Most Linux users already have “gcc” installed.

12Read the "Developers Guide” if you are not sure how to do this.

CHAPTER 4. A GUIDED TOUR 59

Is everybody in? The ceremony is about to begin..

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

At first, it seems like "PAUSE’ is nothing more than an alias for ’ABORT”, but that is not
entirely true. Let’s save the executable and enter ”r”” one more time:

>b

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R)un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile
>r

Wake up! Do you remember where it was?
Has this dream stopped? YES

(S)creen file: new.scr
(O)bject file: out

(E)dit (C)ompile (R) un (A) rguments
(Q)uit (G)enerate (B)uild (D)ecompile

>

Now the second part of the program is run, that is the part after 'PAUSE’. Note that both
the stack and the radix have remained intact. Every time "PAUSE’ is invoked, it will return

you to the prompt. When you enter 1" again, it will continue where it left off, until it meets
one of the following three conditions:

1. It encounters another "'PAUSE’; entering “r”” will continue where it left off.
2. It encounters ’ABORT’, ’QUIT’ or ’ABORT”’; entering “r”” will restart the program.

3. There are no more instructions to execute; entering “’r”” will restart the program.

But why did we save an executable? We’ll have to go back to the shell to show you:

user@linux:~> 4th lxq out

Wake up! Do you remember where it was?
Has this dream stopped? YES
user@linux:~>

Entering ”b” during suspension will save the program in its suspended state. When you run
the resulting executable, it will behave like you’ve entered 1. That’s neat, isn’t it?

CHAPTER 4. A GUIDED TOUR 60
4.9 Calculator mode

Startup 4tH. If you feel quite confident now and this large menu is starting to annoy you,
you can enable the “expert mode” by pressing ’x”. This will just leave a tiny prompt. Don’t
worry - make an error and the menu will reappear. BTW, just pressing <ENTER> will do
the trick as well.

99 99

Now enter the editor by pressing ’e”. We’re going to show you this baby can do a lot more
than just editing:

OK

. (Hello world!) cr
Hello world!

OK

Hey, that is a lot like the very first program we ran! Yes, it is. You can enter a subset of
the 4tH language at the editor prompt, so you can test simple programs like this without
getting into the “edit-compile-run” cycle. You can even make some simple calculations:

OK
23 45 + .
68 OK

Simple? Aren’t the operators and operands entered in the wrong order? No, they aren’t.
4tH uses Reverse Polish Notation, which is also used by HP calculators and the Unix “dc”
command. 4tH has even eight built-in variables in which you can store numbers:

23 45 + A. !
OK

A. ?

68 OK

It even understands binary, hexadecimal and octal numbers:

23 45 + binary .

1000100 OK

1000011111 hex FACE octal 765 + + decimal .
65250 OK

This is called the “calculator mode” and you don’t have to do anything if you want to use
it. It is part of the editor command set. You can mix editor commands and calculations'?
as you like. Nice extra, isn’t it?

4.10 Epilogue

This concludes our tour of the 4tH interactive mode. We hope we’ve shown you what you
can do with it and how to use it. Of course, you don’t have to use 4tH’s interactive mode. It
will happily reside and cooperate with existing external IDE’s, editors and the like. But if
memory is tight and you have nothing else, 4tH will prove to be a completely selfcontained
environment.

If you’re still wondering what you can do with Forth and 4tH in particular, let me tell you
this: if you worked your way through this tour, you’ve been working with Forth all the
time. The entire editor is a 4tH program, embedded in the 4tH executable, taking up less
than 3 KB. It is run by the very same interpreter as your initial "Hello world!” program.
Have fun!

13The full calculator command set is listed in the “Editor reference guide”.

Chapter 5

Frequently asked questions

QUESTION: Why has exec_4th () this enormous switch () statement? Why
wasn’t a structure used with pointers to functions?

ANSWER: That one was built too, but it proved to be upto four times slower on all
platforms. Which is perfectly understandable, because every time you
evaluate a token, you have to take the overhead of calling a function into

account.
QUESTION: Why are the tokens of exec_4th () listed in a random order?
ANSWER: We have statistically analyzed which tokens are used more often. They

are up front. Some C-compilers generate a jumptable. Others generate
a repeated "if .. elif .. endif" construction. Compilants produced by the
latter perform better when tokens are ordered this way.

QUESTION: Do I have to use 4tHs builtin editor?

ANSWER: No. You can use any editor you like. 4tH will happily compile all vanilla
MS-DOS, MS-Windows and Unix text files and most block files as well.
Just use your favorite editor to create your source and compile it at the
command line. Note the editor is capable of exporting vanilla text files.
You can also set the environment variable EDIT4TH to your favorite edi-
tor,e.g. "export EDIT4TH=vi”or”’set EDIT4TH=notepad.exe”.
Note that - exactly like the built in editor - you have to save your work
and exit the editor before you can continue.

QUESTION: Iget”I/0 error” all the time. What am I doing wrong?

61

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 62

ANSWER:

If you’re working with Windows and you’re trying to compile some ex-
ample programs, type ’S’ and enter the relative path to the example file,
e.g. "examples/romans.scr”. Note you can only compile, decom-
pile or run it. If you're working on some other Operating System, be
sure you’ve also installed the library files. Now go to the directory where
you have installed them, e.g. "cd /home/john/4th/1ib” and type
”cd ..”. From this working directory use the relative or absolute path
to your source file when you compile it. Be sure the path of the environ-
ment variable DIR4TH is correct.

QUESTION:

ANSWER:

When I use 4tHs builtin editor and try to save my file I get "Cannot
open file” all the time. What am I doing wrong?

This happens most often to Windows users, who either try to update
one of the example files, e.g. "examples/romans.scr”, or fail to
override 4tHs default file setting using ’S’. In both cases, you try to write
a file to a protected directory, which Windows does not allow. It’s quite
easy to fix. Copy any example programs you want to change to your
home directory. If you want to create a new file, type ’S’ and give the
full path to a file in your home directory. If you don’t know what your
home directory is, open CMD . EXE and type "cd’.

QUESTION:

ANSWER:

When 1 first open 4tHs builtin editor I get "Cannot open file”.
What am I doing wrong?

Probably nothing. 4tH just informs you it cannot load the file you issued
at the main menu or the command line. This is always the case when you
start a new file.

QUESTION:

ANSWER:

When I try to use 4tHs builtin editor or run 4tsH I get "Bad object”
all the time. What am I doing wrong?

You're probably running 4tH under a 64 bit operating system. The only
thing you can do is to recompile 4tH (see sections 27.7 and 27.8).

QUESTION:

ANSWER:

When I try to load a screen file or execute an .hx file, 4tH doesn’t seem
to take the DIR4TH environment variable into account.

The DIR4TH environment variable is used by the compiler when it tries
to pull all source files from their different locations at compiletime. Note
that it only reads files. When the editor would start writing files where
you don’t expect it to, things might get very dangerous. The .kx files are
executables and your Operating System already offers several ways to
find them.

CHAPTER 5. FREQUENTLY ASKED QUESTIONS 63

QUESTION: The DIR4TH environment variable doesn’t work.

ANSWER: The DIR4TH environment variable requires a trailing slash or backslash
- depending on your operating system. If you forget it, then, yes, the
DIR4TH environment variable doesn’t work. So, ”’set DIR4TH=c:/users/myname”
doesn’t work, but ’set DIR4TH=c:/users/myname/” does. I promise.

QUESTION: When I open up the editor in 4tH, it takes most 4tH code like an actual
Forth compiler, but not my colon definitions. Why?

ANSWER: The 4tH editor mimics Forth, that’s true. But it is actually a Forth like
environment on top of 4tH. It may seem like you’re working on a Forth
prompt, but you’re not. You can use the editor only for editing or some
quick calculations, but if you want to use the full capabilities of 4tH,
you’re stuck to the menu.

QUESTION: Can I load shared libraries with 4tH and call the external functions de-
fined there?

ANSWER: No. 4tH is (almost) entirely composed of ANSI-C and since ANSI-C
doesn’t define loading and using shared libraries you can’t. Furthermore,
it would violate 4tH’s uncrashable” design objective, since it is impossi-
ble to trap all possible errors when you call external functions. However,
if you know C, it shouldn’t be too difficult to add that functionality your-
self.

QUESTION: When I compile a 4tH program, I get messages like: "Word 381:
Undefined name”. How do I know where that is?

ANSWER: 4tH is a single pass compiler and keeps the partial compilant in memory
for you to examine. Simply decompile it by pressing "D’ or add the ’d”
option to the command line. Section 11.24 will give you all the details.

QUESTION: I’'m running OS/X and I'm unable to compile 4tH myself. Can I get a
native executable for my platform?

ANSWER: I don’t have access to that particular platform, but a third party Darwin
portis available here: https://ports.macports.org/port/4th/
After installing MacPorts, 4tH can be installed with (no quotes, of course):
”sudo port install 4th”. Youwill automatically get a 4tH build
that matches your OS version. Similarly, thousands of other Open Source
software packages can be installed, upgraded and otherwise managed
with MacPorts.

Part 11

Primer

64

Chapter 6

Introduction

Don’t you hate it? You’ve just got a new programming language and you’re trying to write
your first program. You want to use a certain feature (you know it’s got to be there) and
you can’t find it in the manual.

I’ve had that experience many times. So when I wrote 4tH I promised myself, that would
not happen to 4tH-users. In this manual you will find many short features on all kind of
topics. How to input a number from the keyboard, what a cell is, etc.

I hope this will enable you to get quickly on your way. If it didn’t, email me at ’the.beez.-
speaks@gmail.com’. You will not only get an answer, but you will help future 4tH users
as well.

You can use this manual two ways. You can either just get what you need or work your
way through. Every section builds on the knowledge you obtained in the previous sections.
All sections are grouped into levels. We advise you to use what you’ve learned after you’ve
worked your way through a level.

First, 4tH fundamentals. It assumes a working knowledge of programming and covers the
basics. Second, 4tH arrays. We’ll try to explain to you what an address is and teach you
basic string handling.

Third, 4tHs Character Segment. We’ll explain you how it is laid out and what you can do
with it. Fourth, 4tHs Integer Segment and Code Segment. We’ll explain you how it is laid
out and what you can do with it.

Finally, advanced programming techniques. First the builtin facilities 4tH offers and after
that the extra features the 4tH library offers. We’ll teach you how to program multilevel
exits, write interpreters, use jump-tables, emulate floating point calculation and a whole lot
more!

It’s gonna be a wild ride. So strap in and have fun!

65

Chapter 7

4tH fundamentals

7.1 Making calculations without parentheses

To use 4tH you must understand Reverse Polish Notation. This is a way to write arithmetic
expressions. The form is a bit tricky for people to understand, since it is geared towards
making it easy for the computer to perform calculations; however, most people can get used
to the notation with a bit of practice.

Reverse Polish Notation stores values in a stack. A stack of values is just like a stack of
books: one value is placed on top of another. When you want to perform a calculation,
the calculation uses the top numbers on the stack. For example, here’s a typical addition
operation:

When 4tH reads a number, it just puts the value onto the stack. Thus 1 goes on the stack,
then 2 goes on the stack. When you put a value onto the stack, we say that you push it onto
the stack. When 4tH reads the operator ’+’, it takes the top two values off the stack, adds
them, then pushes the result back onto the stack. This means that the stack contains:

after the above addition. As another example, consider:

2 34 + %

(The **’ stands for multiplication.) 4tH begins by pushing the three numbers onto the stack.
When it finds the '+, it takes the top two numbers off the stack and adds them. (Taking a
value off the stack is called popping the stack.) 4tH then pushes the result of the addition
back onto the stack in place of the two numbers. Thus the stack contains:

When 4tH finds the **’ operator, it again pops the top two values off the stack. It multiplies
them, then pushes the result back onto the stack, leaving:

14

66

CHAPTER 7. 4TH FUNDAMENTALS 67

The following list gives a few more examples of Reverse Polish expressions. After each,
we show the contents of the stack, in parentheses.

72 - (5)
27 - (=95)
12 3/ (4)
-12 3 / (—4)
4 5 + 2 % (18)
4 52 + % (28)
4 52 % - (-6)

7.2 Manipulating the stack

You will often find that the items on the stack are not in the right order or that you need a
copy. There are stack-manipulators which can take care of that.

To display a number you use ’.’, pronounced "dot". It takes a number from the stack and
displays it. ’'SWAP’ reverses the order of two items on the stack. If we enter

4tH answers:

If you want to display the numbers in the same order as you entered them, you have to
enter:

2 3 swap . . Cr

In that case 4tH will answer:

You can duplicate a number using 'DUP”’. If you enter:

4tH will complain that the stack is empty. However, if you enter:

2 dup . . cr

4tH will display:

Another way to duplicate a number is using ’'OVER’. In that case not the topmost number
of the stack is duplicated, but the number beneath. E.g.

23 dup . . . cr

will give you the following result:

CHAPTER 7. 4TH FUNDAMENTALS 68

But this one:

2 3 over . . . cCr
will give you:

2 32

Sometimes you want to discard a number, e.g. you duplicated it to check a condition, but
since the test failed, you don’t need it anymore. 'DROP’ is the word we use to discard
numbers. So this:

2 3 drop .

will give you "2" instead of "3", since we dropped the "3".

The final one I want to introduce is 'ROT’. Most users find 'ROT’ the most complex one
since it has its effects deep in the stack. The thirdmost item to be exact. This item is taken
from its place and put on top of the stack. It is 'rotated’, as this small program will show
you:

\ 1 is the thirdmost item
. cr \ display all numbers
(This will display "3 2 1’ as expected)
123 \ same numbers stacked
rot \ performs a ’ROT’
\ same operation
(This will display "1 3 2'1!)

. Cr

7.3 Deep stack manipulators

No, there are no manipulators that can dig deeper into the stack. A stack is NOT an array!
So if there are some Forth-83 users out there, I can only tell you: learn Forth the proper
way. Programs that have so many items on the stack are just badly written. Leo Brodie
agrees with me.

If you are in ’deep’ trouble you can always use the returnstack manipulators. Check out
that section.

7.4 Passing arguments to functions

There is no easier way to pass arguments to functions as in 4tH. Functions have another
name in 4tH. We call them "words". Words take their "arguments" from the stack and leave
the "result" on the stack.

Other languages, like C, do exactly the same. But they hide the process from you. Because
passing data to the stack is made explicit in 4tH it has powerful capabilities. In other
languages, you can get back only one result. In 4tH you can get back several!

All words in 4tH have a stack-effect-diagram. It describes what data is passed to the stack
in what order and what is returned. The word **’ for instance takes numbers from the stack,
multiplies them and leaves the result on the stack. It’s stack-effect-diagram is:

CHAPTER 7. 4TH FUNDAMENTALS 69
nl n2 —- n3

Meaning it takes number nl and n2 from the stack, multiplies them and leaves the product
(number n3) on the stack. The rightmost number is always on top of the stack, which means
it is the first number which will be taken from the stack. The word ’.” is described like this:

Which means it takes a number from the stack and leaves nothing. Now we get to the most
powerful feature of it all. Take this program:

2 (leaves a number on the stack)

3 (leaves a number on the stack on top of the 2)

* (takes both from the stack and leaves the result)
(

takes the result from the stack and displays it)

Note that all data between the words **’ and *.” is passed implicitly! Like putting LEGO
blocks on top of another. Isn’t it great?

7.5 Making your own words

Of course, every serious language has to have a capability to extend it. So has 4tH. The
only thing you have to do is to determine what name you want to give it. Let’s say you
want to make a word which multiplies two numbers and displays the result.

Well, that’s easy. We’ve already seen how you have to code it. The only words you need
are **” and ’.’. You can’t name it **’ because that name is already taken. You could name
it “'multiply’, but is that a word you want to type in forever? No, far too long.

Let’s call it **.”. Is that a valid name? If you’ve programmed in other languages, you’ll
probably say it isn’t. But it is! The only characters you can’t use in a name are whitespace
characters (<CR>, <LF>, <space>, <TAB>). Note that 4tH is not case-sensitive!

So ’*. is okay. Now how do we turn it into a self-defined word. Just add a colon at the
beginning and a semi-colon at the end:

That’s it. Your word is ready for use. So instead of:

We can type:

And we can use our ’*.” over and over again. Hurray, you’ve just defined your first word in
4tH!

CHAPTER 7. 4TH FUNDAMENTALS 70
7.6 Adding comment

Adding comment is very simple. In fact, there are two ways to add comment in 4tH. That
is because we like programs with a lot of comments.

You’ve already encountered the first form. Let’s say we want to add comment to this little
program:

. This will multiply and print two numbers

4tH will not understand this. It will desperately look for the words ’this’, *will’, etc. How-
ever the word ’\’ will mark everything up to the end of the line as comment. So this will
work:

koox L \ This will multiply and print two numbers

There is another word called (" which will mark everything up to the next ’)” as comment.
Yes, even multiple lines. Of course, these lines may not contain a ’)’ or you’ll make 4tH
very confused. So this comment will be recognized too:

O (This will multiply and print two numbers)

Note that there is a whitespace-character after both *\" and ’(’. This is mandatory! However
the closing paren) does not have to have a leading blank space. It is optional.

7.7 Text-format of 4tH source

4tH source is a simple ASCII-file. And you can use any layout as long a this rule is fol-
lowed:

All words are separated by at least one whitespace character!

Well, in 4tH everything is a word or becoming a word. Yes, even '\’ and ’(’ are words!
And you can add all the empty lines or spaces or tabs you like, 4tH won’t care and your
harddisk supplier either.

7.8 Displaying string literals

Displaying a string is as easy as adding a comment. Let’s say you want to make the ultimate
program, one that is displaying "Hello world!". Well, that’s almost the entire program. The
famous "hello world” program is simply this in 4tH:

CHAPTER 7. 4TH FUNDAMENTALS 71

." Hello world!"

Compile this and it works. Yes, that’s it! No declaration that this is the main function and
it is beginning here and ending there. May be you think it looks funny on the display. Well,
you can add a carriage return by adding the word *CR’. So now it looks like:

." Hello world!" cr

Still pretty simple, huh?

7.9 Creating variables

One time or another you’re going to need variables. Declaring a variable is easy.

variable one

The same rules for declaring words apply for variables. You can’t use a name that already
has been taken. A variable is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive!

7.10 Using variables

Of course variables are of little use when you could not assign values to them. This assigns
the number 6 to variable ’'ONE’:

6 one !

We don’t call ’!” bang or something like that, we call it ’store’. Of course you don’t have
to put a number on the stack to use it, you can use a number that is already on the stack. To
retrieve the value stored in "ONE’ we use:

one (@

The word * @’ is called "fetch’ and it puts the number stored in one’ on the stack. To
display it you use .’

one @ .

There is a shortcut for that, the word *?’, which will fetch the number stored in ’ONE’ and
displays it:

one ?

7.11 Built-in variables

4tH has only three built-in variables. They are called " BASE’, >IN’ and ’OUT’. 'BASE’
controls the radix at run-time, *>IN’ is used by "’PARSE’ and *OUT" returns a value to the
host program.

CHAPTER 7. 4TH FUNDAMENTALS 72

7.12 Whatis a cell?

A cell is simply the space a number takes up. So the size of a variable is one cell. The size
of a cell is important since it determines the range 4tH can handle. It also helps make code
portable across machines with different cell sized, for example 16 bit and 32 big systems.
We’ll come to that further on.

7.13 What is a literal expression?

A literal expression is simply anything that compiles to a literal. All numbers, all defined
constants and some expressions are compiled to a literal. In the glossary you can find what
compiles to a literal, but we list them here too:

’ <name>
["] <name>
[DEFINED] <name>

[UNDEFINED] <name>

CHAR <char>

[CHAR] <char>

<literal> [NOT]
<literal> [SIGN]
<literal> NEGATE
<literal> 1+

<literal> 1-

<literal> 2x

<literal> /FIELD
<literal> +FIELD <name>
<literal> ENUM <name>
<literal> <literal> «*
<literal> <literal> /
<literal> <literal> +
<literal> <literal> -
<literal> <literal> [=]
<literal> <literal> [MAX]

7.14 Declaring arrays of numbers

You can make arrays of numbers very easily. It is very much like making a variable. Let’s
say we want an array of 16 numbers:

16 array sixteen

That’s it, we’re done! You must omit the word "CELLS’, since ’ARRAY’ implicates that
you want an array of numbers, not characters. The size is a literal expression. You can’t
take it from the stack, so this is invalid:

3 dup + array sixteen

4tH will let you know that this is not a valid construction, but in case you wonder..

CHAPTER 7. 4TH FUNDAMENTALS 73
7.15 Using arrays of numbers

You can use arrays of numbers just like variables. The array cells are numbered from O to
N, N being the size of the array minus one. Storing a value in the Oth cell is easy. It works
just like a simple variable:

5 sixteen 0 th !

Which will store ’5’ in the Oth cell. So storing °7’ in the 8th cell is done like this:

7 sixteen 8 th !

Of course when you want to store a value in the first, second or third cell you have to
use 'TH’ too, since it is a word. If you don’t like that try defining *ST’, ’ND’ and 'RD’
yourself:

: st th ;
: nd th ;
: rd th ;
4 sixteen 1 st !
sixteen 2 nd !
6 sixteen 3 rd !

w

Isn’t 4tH wonderful? Fetching is done the same of course:

sixteen 0 th @
sixteen 4 th @

Plain and easy.

7.16 Copying arrays of numbers

If you want to move chunks of data around, there is ’SMOVE’:

1024 array a
1024 array b

a b 512 smove

This will define two arrays of 1024 cells. ’SMOVE’ will move the first 512 cells of array
”a” to array "b”.

7.17 Declaring and using constants

Declaring a simple constant is easy too. Let’s say we want to make a constant called
”FIVE”:

5 constant five

Now you can use "FIVE” like you would ’5’. E.g. this will print five spaces:

CHAPTER 7. 4TH FUNDAMENTALS 74

five spaces

The same rules for declaring words apply for constants. You can’t use a name that already
has been taken. A constant is a word too! And whitespace characters are not allowed. Note
that 4tH is not case-sensitive. By the way, ’5’ is a literal expression. You can’t take it from
the stack or calculate it.

A special kind of constant is the so-called "plus-constant”. This constant will automatically
add itself to the top of the stack when executed, e.g.:

10 +constant tenplus
20 tenplus .

Will print ”30”. First we define a ’"+CONSTANT’ named “tenplus”, then we throw 720" on
the stack, finally we execute “tenplus” and print the result. It is equivalent to:

10 constant ten
20 ten + .

Yes, you guessed it, a ’”+CONSTANT"’ is a constant with built-in addition! Cool, huh? And
if you thought it couldn’t get any better, there are also **CONSTANT’ and */CONSTANT’,
which have built-in multiplication and division.

7.18 Built-in constants

There are several built-in constants. Of course, they are all literals in case you wonder.
Here’s a list. Refer to the glossary for a more detailed description:

/PAD
/TIB
/HOLD
/CELL
/CHAR
MAX-N
MAX-CHAR
CHAR-BITS
(ERROR)
BL
FALSE
ife)
APP
PAD
STACK-CELLS
TIB
TRUE
VARS
WIDTH
INPUT
OUTPUT
STDOUT
STDIN
APPEND
PIPE
FILES
4TH#

CHAPTER 7. 4TH FUNDAMENTALS 75
7.19 Using booleans

Booleans are expressions or values that are either true or false. They are used to condition-
ally execute parts of your program. In 4tH a value is false when it is zero and true when it
is non-zero. Most booleans come into existence when you do comparisons. This example
will determine whether the value in variable VAR’ is greater than 5. Try to predict whether
it will evaluate to true or false:

variable var
4 var !
var @ 5 > .

No, it wasn’t! But hey, you can print booleans as numbers. Well, they are numbers. But
with a special meaning as we will see in the next section.

7.20 IF-ELSE constructs

Like most other languages you can use IF-ELSE constructs. Let’s enhance our previous
example:

variable var

4 var !

var @ 5 >

if ." Greater" cr

else ." Less or equal" cr
then

So now our program tells you when it’s greater and when not. Note that contrary to other
languages the condition comes before the 'IF’ and "THEN’ ends the IF-clause. In other
words, whatever path the program takes, it always continues after the "THEN’. A tip: think
of "THEN’ as ’ENDIF’..

7.21 FOR-NEXT constructs

4tH has FOR-NEXT constructs as well. The number of iterations is known in this construct.
E.g. let’s print the numbers from 1 to 10:

11 1 do i . cr loop

The first number represents the limit. When the limit is reached or exceeded the loop
terminates. The second number presents the initial value of the index. That’s where it
starts off. So remember, this loop iterates at least once! You can use *?DO’ instead of
’DO’. That will not enter the loop if the limit and the index are the same to begin with:

0 0 ?2do i . cr loop

’1’ represents the index. It is not a variable or a constant, it is a predefined word, which puts
the index on the stack, so ’.” can get it from the stack and print it.

But what if I want to increase the index by two? Or want to count downwards? Is that
possible. Sure. There is another construct to do just that. Okay, let’s take the first question:

CHAPTER 7. 4TH FUNDAMENTALS 76
11 1 do i . cr 2 +loop

This one will produce exactly what you asked for. An increment by two. This one will
produce all negative numbers from -1 to -10:

-11 -1 do i . cr -1 +loop

Note that the step is not a literal expression. You can change the step if you want to, e.g.:

32767 1 do 1 . i +loop

This will print: 1, 2, 4, 8, all up to 16384. Pretty flexible, I guess. You can break out of a
loop by using "LEAVE’. Note that 'TLEAVE’ only sets the index to the value of the limit:
it doesn’t branch or anything. Make sure that there is no code left between 'LEAVE’ and
’LOOP’ that you don’t want to execute. So this is okay:

10 0 do i dup 5 = if drop leave else . cr then loop

And this is not:

10 0 do i dup 5 = if drop leave then . cr loop

Since it will still get past the *.” before leaving. In this case you will catch the error quickly,
because the stack is empty.

7.22 WHILE-DO constructs

A WHILE-DO construction is a construction that will perform zero or more iterations. First
a condition is checked, then the body is executed. Then it will branch back to the condition.
In 4tH it looks like this:

BEGIN <condition> WHILE <body> REPEAT

The condition will have to evaluate to TRUE in order to execute the body. If it evaluates to
FALSE it branches to just after the REPEAT. This example does a Fibbonaci test.

: fib 0 1
begin
dup >r rot dup r> > \ condition
while
rot rot dup rot + dup . \ body
repeat
drop drop drop ; \ after loop executed

You might not understand all of the commands, but we’ll get to that. If you enter "20 fib"
you will get:

1235813 21

This construct is particularly handy if you are not sure that all data will pass the condition.

CHAPTER 7. 4TH FUNDAMENTALS 77
7.23 REPEAT-UNTIL constructs

The counterpart of WHILE-DO constructs is the REPEAT-UNTIL construct. This executes
the body, then checks a condition at "UNTIL’. If the expression evaluates to FALSE, it
branches back to the top of the body (marked by "BEGIN’) again. It executes at least once.
This program calculates the largest common divisor.

: led
begin
swap over mod \ body
dup 0= \ condition

until drop . ;

If you enter "27 21 lcd" the programs will answer "3".

7.24 Infinite loops

In order to make an infinite loop one could write:

begin ." Diamonds are forever" cr 0 until

But there is a nicer way to do just that:

begin ." Diamonds are forever" cr again

This will execute until the end of times, unless you exit the program another way.

7.25 Including source files

4tH has a vocabulary of over 200 words. If you use them in one of your 4tH programs 4tH
will recognize them instantly. These words are internal.

But if you take a look at the glossary, you’ll find that there are a lot of other words too.
Words that 4tH will not recognize; they have to be included first. These words are external.

These words are defined in an include file. An include file is just an ordinary ASCII file
with 4tH source. You can read them if you want. In order to use these words, you have to
tell 4tH where it can find the include file.

This is done by the '[NEEDS’ directive, which is equivalent to the COMUS word ’IN-
CLUDE’ (which 4tH also supports). Everything up to the next ’]” is considered to be a
filename, so the path may contain embedded spaces. You can use absolute paths or rela-
tive paths, just make sure that you're starting 4tH from the proper directory. E.g. this one
includes additional ANS-Forth CORE-words from the directory just above ’lib’!:

[needs lib/anscore.4th]

include lib/anscore.4th

4tH comes with a rich library of words, which covers a large part of ANS-Forth and CO-
MUS? standard words and beyond. They are all located in the ’lib’ directory. In the next
level we’re going to need a lot of these words, so you’d better know how to include them.

'If you’re not sure where that is, enter the lib’ directory and execute “cd ..”.
21n case you wonder, COMUS stands for COMmon USage.

CHAPTER 7. 4TH FUNDAMENTALS 78
7.26 Getting a number from the keyboard

The word to enter a number from the keyboard can be found in the ’lib’ directory and
is defined in the enter. 4th file. To include it you have to tell 4tH. We assume your
working directory is just above the ’lib’ directory?:

[needs lib/enter.4th]

That’s all! Now you can use ’ENTER’ just like any 4tH word. This will allow you to enter
a number and print it:

[needs lib/enter.4th]
enter . cr

By the way, this is the end of the first level. Take our advise and give it a try!

3 As a matter of fact, we will always assume that! If you don’t know what we mean, execute “cd <path to lib
directory>" and then “cd ..”. Now you’re there for sure! Note none of this is any concern to you if you set the
DIR4TH variable.

Chapter 8

4tH arrays

8.1 Aligning numbers

You may find that printing numbers in columns (I prefer "right-aligned") can be pretty
hard. That is because the standard word to print numbers (’.”) prints the number and then a
trailing space. That is why *.R’ was added.

The word *.R’ works just like *.” but instead of just printing the number with a trailing
space *.R’ will print the number right-aligned in a field of N characters wide. Try this and
you will see the difference:

140 . cr
150 5 .r cr

In this example the field is five characters wide, so 150’ will be printed with two leading
spaces.

8.2 Creating arrays of constants

Making an array of constants is quite easy. First you have to define the name of the array
by using the word "TABLE’ or ’CREATE’ (which is ANS-Forth). Then you specify all its
elements. Note that every element is a literal expression. All elements (even the last) are
terminated by the word ’,’. An example:

create sizes 18 , 21 , 24 , 27 , 30 , 255,

Please note that ’,” is a word! It has to be separated by spaces on both ends.

8.3 Using arrays of constants

Accessing an array of constants is very much like accessing an array of numbers. In an
array of numbers you access the Oth element like this:

sixteen 0 th @

79

CHAPTER 8. 4TH ARRAYS 80

When you access the first element of an array of constants you use this construction:

sizes 0 th Qc

The only difference is the word *@C’, which is exclusively used to access arrays of con-
stants.

8.4 Using values

A value is a cross-over between a variable and a constant. May be these examples will give
you an idea:

declaration:

variable a
1 constant b
2 b + value c

No initial value)
Literal expression assigned at compiletime)
Expression assigned at runtime)

fetching:

a @ (Variable throws address on stack)

b (Constant throws value on stack)

c (Value throws value on stack)
storing:

2 b+ a! (Expression can be stored at runtime)

(Constant cannot be reassigned)

2 b+ toc (Expression can be stored at runtime)
adding:

2 b+ a +! (Expression can be added at runtime)

Constant cannot be reassigned)

2 b + +to ¢ Expression can be added at runtime)

In many aspects, values behave like variables and can replace variables. The only thing you
cannot do is make arrays of values. A value is not a literal expression either, so you can’t
use them to size arrays. In fact, a value is a variable that behaves in certain aspects like a
constant.

"VALUE’ must be used for declaration and *"TO’ must be used for reassignment - just like
"VARIABLE' is used for declaration and ’!” is used for (re)assignment.

If you wonder whether it’s better to use a value or a variable, just don’t. Internally, 4tH
switches between a value representation and a variable representation as it sees fit. A clear
case is when you want to initialize a value just once. In that case you take a value - not a
variable.

CHAPTER 8. 4TH ARRAYS 81
8.5 Creating string variables

In 4tH you have to define the maximum length of the string, like Pascal:

10 string name

You cannot add the 'CHARS’ keyword, since ’STRING’ already implies that you are cre-
ating an array of characters. Note that the string variable includes the terminator. That is a
special character that tells 4tH where the string ends (see section 8.14). You usually don’t
have to add that yourself because 4tH will do that for you. But you will have to reserve
space for it.

That means that the string "name" we just declared can contain up to nine characters AND
the terminator. These kind of strings are usually referred to as ASCIIZ strings.

E.g. when you want to define a string that has to contain "Hello!" (without the quotes) you
have to define a string that is at least 7 characters long:

7 string hello

8.6 What is an address?

An address is a location in memory. Usually, you don’t need to know addresses, because
4tH will take care of that. But if you want it, you can retrieve them as we will show you
later. Think of memory like a city. It has roads and houses and inhabitants. There are three
roads in 4tH city:

1. INTEGER SEGMENT, that is where the cells live;
2. CHARACTER SEGMENT, that is where the strings live;
3. CODE SEGMENT, that is where the instructions that form your program live.
If you want to visit a certain person, you go to the city where he lives, find the right street

and knock on the door. If you want to retrieve a certain string or integer, you do the same.

When you define a string, you actually create a constant with the address of that string.
When you later refer to the string you just defined its address is thrown on the stack. An
address is simply a number that refers to its location. As you will see you can work with
string-addresses without ever knowing what that number is. But because it is a number you
can manipulate it like any other number. E.g. this is perfectly valid:

16 string hello

hello \ address of string on stack
dup \ duplicate it
drop drop \ drop them both

Later, we will tell you how to get "Hello!" into the string.

CHAPTER 8. 4TH ARRAYS 82
8.7 String literals

In 4tH a string literal is created by the word ’S””’. The word ’S"’ is very much like ’.", but
instead of printing it to the screen you will just be defining a string literal.

s" This is a string"

4tH is a stack oriented language, so what does ’S™’ leave on the stack? In 4tH, a string
is usually represented by on the stack by its address and its count. So in order to get its
length, you only have to get the first value on the stack. In order to get its address you have
to get the second value on the stack, which is demonstrated by this small program:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

And what about string literals with quotes. Easy, there is an equivalent to ’S”” that does the
same thing:

s| "This is a string with quotes"|
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Instead of a quote, the string is delimited by a bar. And what about string literals that
include them both? Bad luck? Well, almost but not quite. Just take a look at section 13.15.

8.8 String constants

String constants work the same way as numeric constants:

10 constant ten \ define a string constant
ten . cr \ equivalent to: 10 . cr

In fact, you give a name to a literal value. After that, you can refer to that literal throughout
your program by using its name. String constants do the same thing. Take a look at this
little piece of code:

s" This is a string" \ create a temporary string
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Now we do the same thing, but this time we define a string constant by using *SCON-
STANT’:

s" This is a string" sconstant mystring
\ define a string constant

mystring \ now we use the string constant
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Why use string constants? Well, first of all, if you use a string constant throughout your
program, it will save you some editing when you have to change your program for one
reason or another. Second, it will make your program a little smaller.

CHAPTER 8. 4TH ARRAYS 83
8.9 Initializing string variables

You can initialize a string with the ’S"” word. If you want the string to contain your first
name use this construction:

s" Hello!" name place

The word "PLACE’ copies the contents of a string literal into a string-variable.

If you still don’t understand it yet, don’t worry. As long as you use this construction, you’ll
get what you want. Just remember that assigning a string literal to a string that is too short
will result in an error or even worse, corrupt other strings.

8.10 Imitializing a NULL string variable

If you’re not sure what that means, it means we’re initializing a string variable to an empty
string. Well, that’s very easy:

0 name c!
pad 0 name place
0 dup name place

Choose any of these three. And all these constucts are compatible with ANS-Forth.

8.11 Getting the length of a string variable

You get the length of a string variable by using the word ’"COUNT". It will not only return
the length of the string variable, but also the string address. It is illustrated by this short
program:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’'Hello!’
greeting count \ get string length

." String length: " . cr \ print the length

drop \ discard the address

Most string handling words return or take an address/count pair. One of the exceptions
is the string variable itself (see section 8.9). To copy the contents of an address/count
pair represented string into a string variable, we use "'PLACE’. In order to convert a string
variable back to an address/count pair represented string, we use "COUNT’:

32 string my-string \ create a string variable
\ create an address/count
s" This is a string" \ pair represented string
my-string place \ copy it into the variable
my-string count \ convert it into an address/count pair
." Length : " . cr \ show the length
." Address: " . cr \ show the address

Note that the contents of the string variable do not change by a "COUNT’ conversion!

CHAPTER 8. 4TH ARRAYS 84
8.12 Printing a string variable

Printing a string variable is pretty straight forward. The word that is required to print a
string variable is *"TYPE’. It requires an address/count pair. Yes, that are the values that
are left on the stack by "TCOUNT’! So printing a string means issuing both "COUNT’ and
"TYPE’:

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to ’Hello!’
greeting count type cr \ print the string

If you don’t like this you can always define a word like "PRINTS’:

: print$ count type ;

32 string greeting \ define string greeting
s" Hello!" greeting place \ set string to 'Hello!’
greeting print$ cr \ print the string

8.13 Copying a string variable

You might want to copy one string variable to another. Let’s take a look at this example:

32 string one \ define the first string

32 string two \ define the second string

s" Greetings!" one place \ initialize string one

one count \ get the length of string one
two place \ and copy it into string two
two count type cr \ print string two

First we place the string ”Greetings!” into a string variable. ’S™” will put an address/count
pair on the stack, that is consumed by 'PLACE’. Variable "ONE” only puts its address
on the stack, that is converted into an address/count pair by 'TCOUNT’. After it has been
consumed again by 'PLACE’ we need "COUNT’ again to provide "'TYPE’ with an ad-
dress/count pair.

8.14 The string terminator

In order for ’'COUNT’ to work, it has to know where the string stops. So a special character
at the end of the string, the string terminator, is used to indicate the end of an ASCIIZ string.
It has nothing to do with Arnold Schwarzenegger obliterating innocent strings! It is simply
a character, having the ASCII value zero. It may also be referred to as the NULL-character.
Although most strings in 4tH will be terminated automatically it is considered bad style to
rely on that.

If you have doubts, you can always convert an address/count pair to a terminated string
by applying *>STRING’, although you have to take care that nothing is overwritten and
enough space is available. As a rule of the tumb you might say that >>STRING’ can safely
be applied to all string variables.

CHAPTER 8. 4TH ARRAYS 85
8.15 Slicing strings

Slicing strings is just like copying strings. We just don’t copy all of it and we don’t always
start copying at the beginning of a string. We’ll show you what we mean:

32 string one \ define string one

s" Hans Bezemer" one place \ initialize string one

one count 2dup type cr \ duplicate and print it

1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
2dup type cr \ duplicate and print it again
1 /string \ move one character forward
type cr \ print it for the last time

First it will print "Hans Bezemer", then "ans Bezemer", then "ns Bezemer" and finally
"s Bezemer". The word */STRING’ adjusts the address/count pair by a given number of
characters, in this case one character. The word *2DUP’ is much like "'DUP’, but it copies
the top fwo values on the stack. It is functionally equivalent to:

over over

If we want to discard the first name at all we could even write:

32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
one count 5 /string type cr \ print sliced string

The five characters we want to skip are the first name (which is four characters) and a space
(which adds up to five). There is a special word for slicing strings in the library member
slice.4th. You call it with:

address count position-to-start position-to-end

Both positions start counting at zero. So this will copy the first name to string "two" and
print it:

[needs lib/slice.4th]

declare string one
declare string two
initialize string one
slice the first name
copy it to string two
print string two

32 string one

32 string two

s" Hans Bezemer" one place
one count 0 3 slice

two place

two count type cr

s s s s

This will slice the last name off and store it in string "two":

[needs lib/slice.4th]

declare string one
declare string two
initialize string one
slice the last name
copy it to string two
print string two

32 string one

32 string two

s" Hans Bezemer" one place
one count 5 11 slice

two place

two count type cr

~ s s s s

Since the last name is seven characters long and starts at position five (start counting with
zero!).

CHAPTER 8. 4TH ARRAYS 86
8.16 Appending strings

The word *+PLACE!” appends two strings. In this example string "one" holds the first
name. The second string literal is appended to string "one" to form the full name. Finally
string "one" is printed.

32 string one \ define string one

s" Hans " one place \ initialize first string

s" Bezemer" one +tplace \ append ’'Bezemer’ to string
one count type cr \ print first string

8.17 Comparing strings

If you ever sorted strings you know how indispensable comparing strings is. As we men-
tioned before, there are very few words in Forth that act on strings. Here is a word that can
compare two strings. It is located in the library member compare.4th.

[needs lib/compare.4th]

compare two chars
define string one
initialize string one
define string two
initialize string two

32 string one
s" Hans Bezemer" one place
32 string two
s" HANS BEZEMER" two place

~ s s

one count two count compare \ compare two strings

if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

Simply pass two strings (represented by their address/count pairs) to "COMPARE’ and it
will return a TRUE flag when the strings are different. This might seem a bit odd, but
strcmp () does exactly the same. If you don’t like that you can always add '0=" to the
end of "COMPARE’ to reverse the flag.

You’ll soon find out that ANS-Forth’s ’COMPARE’ is case sensitive. Lucky for you, you
can modify the behaviour of 4tH’s "COMPARE’. Just define this before the *[NEEDS’
directive:

[pragma] casesensitive
[needs lib/compare.4th]
\ compare two chars
32 string one \ define string one
s" Hans Bezemer" one place \ initialize string one
32 string two \ define string two
s" HANS BEZEMER" two place \ initialize string two

one count two count compare \ compare two strings

if

." Strings differ" \ message: strings ok
else

." Strings are the same" \ message: strings not ok
then
cr \ send CR

IThere is a COMUS word called ’APPEND’ which works exactly the same.

CHAPTER 8. 4TH ARRAYS 87

Now "COMPARE’ will do a case sensitive comparison.

Note that 4tH’s "COMPARE’ also differs in other ways from an ANS-Forth compliant
’COMPARE’. That one requires ”’-1” when the string is smaller, ”0” when it matches and
”1” when it’s larger. True, most of the time it doesn’t matter: you use *0<’ to sort it and
0= to see if it matches. Which works both ways. Except that the default is a bit shorter
and faster. But if you really require an ANS-compliant implementation you deserve to get
it - just use the '[PRAGMA]’ JANSCOMPARE”.

However, if you want a COMUS-like "ICOMPARE”, just use the '[PRAGMA]’ “USE-
ICOMPARE?”. If you need a case sensitive’COMPARE’ as well, justinclude i compare. 4th.
It’s your choice.

8.18 Finding a substring

Sometimes you need to find a string within a string. ANS-Forth has defined a word for that
too. It is called "'SEARCH’. You need to include search. 4th in order to use it. Now lets
find "the” in this string:

[needs lib/search.4th]

s" How the cow catches the hare"

s" the" search \ search for ’the’
0= if ." not " then ." found: "
type \ print the result

"SEARCH’ always returns a flag and a address/count pair. If it returns true, the substring
was found; if it returns false, the substring was not found. Now that’s pretty straightfor-
ward, isn’t it? That means that the small program above will print:

found:

When the substring was found and:

not found:

When the substring was not found. But what kind of string does it return when the substring
was not found? Well, the entire string you fed it, so this would have been its output if we
had been looking for the substring “now” instead of ”the”:

not found: How the cow catches the hare

But in this specific example we are looking for “the”. When found, ’SEARCH’ returns the
string after the first occurrence of the substring we were looking for:

found: the cow catches the hare
Why that? Why not a position? Well, first of all, you can look for the same substring again:

[needs lib/search.4th]

s" How the cow catches the hare"

s" the" search drop \ drop the flag

2dup type \ print the string
s" the" search drop \ now search again
type \ print the string

CHAPTER 8. 4TH ARRAYS 88
This will print:

the cow catches the hare
the hare

But if you still want to see a position instead of a string, you can simply define this:

[needs lib/search.4th]
: position
2>r over swap 2r> search 0= >r drop swap - r> if 1- then

’

s" How the cow catches the hare"
s" the" position . cr

That will take care of your problems. If the substring was found, "POSITION” will return a
positive number. If it wasn’t found, it will return a negative number. Note that ’'SEARCH’
can be persuaded to do a case-sensitive comparison, just like 'COMPARE’:

[pragma] casesensitive
[needs lib/search.4th]

Now "SEARCH’ will do a case sensitive comparison, just like ’'COMPARE’.

8.19 Replacing substrings

Sometimes finding is not enough. You have replace it by something else. You can do that
very easily with 4tH. Just include replace. 4th. It contains a word that will do all that.
Take this example:

[needs lib/replace.4th]

s" How the cow catches the hare" s" the" s" a"
replaceall type cr

It will print:
How a cow catches a hare

Yes, this one replaces all occurrences of ’the” by ”a”. Note that like "COMPARE’ and
"SEARCH?” this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.20 Deleting substrings

Yes, we even got a word for ’search-and-destroy’ missions. You only have to include
replace.4th:

CHAPTER 8. 4TH ARRAYS 89

[needs lib/replace.4th]

s" How the cow catches the hare" s" the"
deleteall type cr

This will print:
How cow catches hare

Yes, it deletes all occurrences of ’the”. Note that like ’"COMPARE’, ’'SEARCH’ and 'RE-
PLACE’ this one can be made case sensitive too:

[pragma] casesensitive
[needs lib/replace.4th]

8.21 Removing trailing spaces

You probably know the problem. The user of your well-made program types his name and
hits the spacebar before hitting the enter-key. There you go. His name will be stored in
your datafile with a space and nobody will ever find it.

In 4tH there is a special word called *~-TRAILING’ that removes the extra spaces at the end
with very little effort. Just paste it after "COUNT"’. Like we did in this example:

32 string one \ define a string
s" Hans Bezemer " \ string with trailing spaces
one place \ now copy it to string one

one dup \ save the address

Lo \ print a bracket
count type \ old method of printing
"IN ocer \ print bracket and newline

A \ print a bracket
count -trailing type \ new method of printing
"1 cer \ print a bracket and newline

You will see that the string is printed twice. First with the trailing spaces, second without
trailing spaces.

8.22 Removing leading spaces

And what about leading spaces? Patience, old chap. You’ve got a lot of ground to cover.
There is no built-in word for that, but we can use a library member like we did in this
example:

[needs lib/leading.4th]

32 string one \ define a string
s" Hans Bezemer" string with leading spaces
one place \ now copy it to string one

—~

one dup \ save the address

CHAPTER 8. 4TH ARRAYS 90

LT \ print a bracket
count type old method of printing
"1 ocer \ print bracket and newline

—

LT \ print a bracket
count -leading type new method of printing
A S o \ print a bracket and newline

—~

You will see that the string is printed twice. First with the leading spaces, second without
leading spaces. Happy?

8.23 Upper and lower case

Sometimes you will have to convert a string to upper or lower case. 4tH has a library
member for that too. Just include:

[needs lib/ulcase.4th]

This will define several easy to use conversion words. E.g. in order to convert a string to
upper case, just enter:

s" Convert this!" s>upper \ convert addr/count string to uppercase
type cr \ type the string

Its lower case counterpart is:

s" Convert this!" s>lower \ convert addr/count string to lowercase
type cr \ type the string

Like most string words it takes and returns an address/count pair. Note that the string in
question is modified, so if you still need the original, copy it first. You can also convert an
individual character:

char A char>lower emit \ convert a character and show it

And consequently, its counterpart is:

char a char>upper emit \ convert a character and show it

These words take an ASCII value from the stack, convert it and put the converted ASCII
value back on the stack. If the value does not represent a alphabetic character, it is left
unchanged.

8.24 String literals and string variables

Most computer languages allow you to mix string literals and string variables. Not in 4tH.
In 4tH they are two distinct datatypes. To print a string literal you use the word *."’. To
print a string variable you use the ’"COUNT TYPE’ construction.

There are only three different actions you can do with a string literal. First, you can define
one using ’S"’. Second, you can print one using *."” Finally, you can compile a string into

EIRTE]

your program using ’,

This may seem a bit mind-boggling to you now, but we’ll elaborate a bit further on this
subject later.

CHAPTER 8. 4TH ARRAYS 91
8.25 Printing individual characters

"[already know that!"

Sure you do. If you want to print "G" you simply write:
. " Gll

Don’t you? But what if you want to use a TAB character (ASCII 9)? You can’t type in that
one so easily, huh? You may even find it doesn’t work at all!

Don’t ever use characters outside the ASCII range 32 to 127 decimal. It may or may not
work, but it won’t be portable anyway. the word ’EMIT’ may be of some help. If you want
to use the TAB-character simply write:

9 emit

That works!

8.26 Distinguishing characters

Like in a novel, not all characters are created equal. There are upper case characters, lower
case characters, control characters, whitespace, etc. Sometimes it is necessary to find out
what kind of character we are dealing with. Of course, 4tH can help you there. You need
to include i stype. 4th in order to use it:

char a is-lower . cr
char a is-upper . cr

4tH will first print a TRUE value (because ’a’ is a lower case character) and then a FALSE
value. This table tells you what words 4tH offers and the ranges of valid characters:

WORD RANGE (ASCII) DESCRIPTION

IS-ASCII 0-127 All 7-bit ASCII characters
IS-PRINT 32-127 As above, without control characters
IS-WHITE | 0-32 All control characters plus space
IS-DIGIT 0 -9 All digits

IS-LOWER | ’a’ -’7’ All lower case characters

IS-UPPER A - All upper case characters
IS-ALPHA a’-’z’ AN - All alphabetic characters
IS-ALNUM | ’0’-°9’,’a’ -’z’,’A’ -°Z’ | All alphanumeric characters

Table 8.1: Character typing words

CHAPTER 8. 4TH ARRAYS 92
8.27 Getting ASCII values

Ok, ’EMIT’ is a nice addition, but it has its drawbacks. What if you want to emit the
character "G". Do you have to look up the ASCII value in a table? No. 4tH has another
word that can help you with that. It is called "CHAR’. This will emit a "G":

char G emit

The word "CHAR’ looks up the ASCII-value of "G" and leave it on the stack. You can
also use '[CHARY]’. It does exactly the same thing. It is included for compatibility with
ANS-Forth versions. Note that ’"CHAR’ only works with printable characters (ASCII 33 to
127 decimal).

8.28 Printing spaces

If you try to print a space by using this construction:

char emit

You will notice it won’t work. Sure, you can also use:

But that isn’t too elegant. You can use the built-in constant 'BL” which holds the ASCII-
value of a space:

bl emit

That is much better. But you can achieve the same thing by simply writing:
space

Which means that if you want to write two spaces you have to write:
space space

If you want to write ten spaces you either have to repeat the command *SPACE’ ten times
or use a DO-LOOP construction, which is a bit cumbersome. Of course, 4tH has a more
elegant solution for that:

10 spaces

Which will output ten spaces. Need I say more?

CHAPTER 8. 4TH ARRAYS 93
8.29 Fetching individual characters

Take a look at this small program:

32 string one \ define string one
s" Hans" one place \ initialize string one

What is the second character of string "one"? Sure, its an "a". But how can you let your
program determine that? You can’t use *@’ because that word can only access variables.

Sure, you can do that in 4tH, but it requires a new word, called ’C@’. Think of a string as
an array of characters and you will find it much easier to picture the idea. Arrays in 4tH
always start with zero instead of one. So accessing the first character might be done with:

one 0 th ca@

We do not recommend using this construction, although it will work perfectly. If you never
want to convert your program to Forth you might even choose to keep it that way. We
recommend the construction:

one 0 chars + c@

Which is slightly more wordy. 4tH will compile both constructions in exactly the same
way. Anyway, accessing the second character is easy now:

one 1 chars + c@

This is the complete program:

32 string one \ define string one

s" Hans" one place \ initialize string one
one 1 chars + c@ \ get the second character
emit cr \ print it

8.30 Storing individual characters

Storing individual characters works just the same. Keep that array of characters in mind.
When we want to fetch a variable we write:

my_var @
When we want to store a value in a variable we write:
5 my_var !

Fetching only requires the address of the variable. Storing requires both the address of the
variable and the value we want to store. On top of the stack is the address of the variable,
below that is value we want to store. Keep that in mind, this is very important.

Let’s say we have this program:

CHAPTER 8. 4TH ARRAYS 94

32 string one \ define string one
s" Hans" one place \ initialize string one

Now we want to change "Hans" to "Hand". If we want to find out what the 4th character of
string "one" is we write:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + c@ \ get the fourth character

Remember, we start counting from zero! If we want to store the character "d" in the fourth
character, we have to use a new word, and (yes, you guessed it right!) it is called "C!’:

32 string one \ define string one
s" Hans" one place \ initialize string one
one 3 chars + \ address of the fourth char
char d \ we want to store ’d’
swap \ get the order right
\

c! now store ’d’

If we throw the character "d" on the stack before we calculate the address, we can even
remove the "'SWAP’:

32 string one

char d

s" Hans" one place
one 3 chars +

c!

define string one

we want to store ’'d’
initialize string one
address of the fourth char
now store ’d’

e e -

We will present the very same programs, but now with stack-effect-diagrams in order to
explain how this works. We will call the index ’i’, the character we want to store ’c’

and the address of the string ’a’. By convention, stack-effect-diagrams are enclosed by
parenthesis.

If you create complex programs this technique can help you to understand more clearly
how your program actually works. It might even save you a lot of debugging. This is the
first version:

32 string one
s" Hans" one place

n
c!

c a+i)
--)

(
(
one 3 chars (a i)
+ (a+i)
char d (a+i c)
swap (¢ a+i)
c! (=)
Now the second, optimized version:
32 string one ()
char d (c)
s" Hans" one place (c)
one 3 chars (cai)
(
(

CHAPTER 8. 4TH ARRAYS 95
8.31 Getting a string from the keyboard

Of course, you don’t want to initialize strings all your life. Real applications get their input
from the keyboard. We’ve already shown you how to get a number from the keyboard.
Now we turn to strings.

When programming in BASIC, strings usually have an undefined length. Some BASICs
move strings around in memory, others have to perform some kind of "garbage-collection".
Whatever method they use, it takes up memory and processor-time.

4tH forces you to think about your application. E.g. when you want to store somebodies
name in a string variable, 16 characters will be too few and 512 characters too many. But
64 characters will probably do.

But that poses a problem when you want to get a string from the keyboard. How can you
prevent that somebody types a string that is just too long? And how do you terminate it?

The word *ACCEPT’ takes two arguments. First, the string variable where you want to
save the input and second, the maximum number of characters it can take. It automatically
terminates the string when reading from the keyboard. But there is a catch. This program
can get you into trouble:

64 constant #name \ length of string
#name string name \ define string ’name’
name #name accept \ input string

name swap type cr \ swap count and print

Since 64 characters plus the terminator add up to 65 characters. The word *ACCEPT’
always returns the number of characters it received. You will find that you won’t need that
information most of the time.

This is the end of the second level. Now you should be able to understand most of the
example programs and write simple ones. I suggest you do just that. Experience is the best
teacher after all.

Chapter 9

Character Segment

9.1 The Character Segment

Wonder where all these strings are created? I bet you do. Well, when you define a string,
memory is allocated in the Character Segment. When you define another one, space is
allocated after the first string. That means that if you go beyond the boundaries of the first
string, you’ll end up in the space allocated to the second string.

After the second string there is a void. If you end up there your program will end with an
error-message. And what about the space before the first string? Well, take a look at figure
9.1.

The lower memory is at the bottom. Yes, before your
strings there are two other areas, the TIB and the PAD.
We’ll elaborate on that in the next section.

The Character Segment is created at run-time. That means User strings
that it isn’t there when you compile a program. The com-
piler just keeps track of how much memory would be
needed to create such a Character Segment and stores that
information in the header.

PAD

TIB

When you run the program the header is read first. Then
the Character Segment is created, so it is already there
when your program starts executing. When you exit the Figure 9.1: Character seg-
program, the Character Segment is destroyed and all in- ment

formation stored there is lost (unless you save it first).

9.2 Whatis the TIB?

The TIB stands for "Terminal Input Buffer" and is used by one single, but very important
word called "REFILL’. In essence, 'REFILL’ does the same thing as ’ACCEPT’, except
that it has a dedicated area to store its data and sets up everything for parsing. Whatever
you type when you call 'REFILL, it is stored in the TIB.

96

CHAPTER 9. CHARACTER SEGMENT 97
9.3 What is the PAD?

The PAD is short for "scratch-pad". It is a temporary storage area for strings. It is heavily
used by 4tH itself, e.g. when you print a number the string is formed in the PAD. Yes,
that’s right: when you print a number it is first converted to a string. Then that string is
’COUNT’ed and "'TYPE’d. You can even program that subsystem yourself as we will see
when we encounter formatted numbers (see section 9.8).

5 999

Furthermore, string constants (compiled by *S™” or ’,”’) are temporarily stored in the PAD.
Finally, ' NUMBER’ and *ARGS’ also use the PAD. The PAD is actually a circular buffer.
That means that strings are stored in the PAD until it runs out of space. Then it starts to
overwrite the oldest strings. Usually, they have turned into garbage that is no longer used,
but sometimes they still have some significance to your program. In that case, you’ll have
to save the string that was overwritten into a variable. Don’t rely on the PAD to keep your
strings alive!

9.4 How do I use TIB and PAD?

In general, you don’t. The TIB is a system-related area and it is considered bad practice
when you manipulate it yourself. The PAD can be used for temporary storage, but beware!
Temporary really means temporary. A few words at the most, provided you don’t use any
string constants.

Think of both these areas as predefined strings. You can refer to them as *TIB’ and "PAD”’.
You don’t have to declare them in any way. This program is perfectly alright:

s" Hello world" pad place \ store a string in pad
pad count type cr \ print contents of the pad

If you want to know how big TIB and PAD are, you can use the predefined constants */TIB’
and */PAD’:

." Size of TIB: " /TIB . cr \ print sizeof TIB
." Size of PAD: " /PAD . cr \ print sizeof PAD

Note, this does not print the length of a string stored in the area, but the maximum size
of the string that can be stored there. Some space of the PAD is reserved for number
generation (see section 9.3). You can get the size of this area by the predefined constant
’/HOLD’. This will print the size of this area and the size of PADs circular buffer:

." Size of HOLD : " /HOLD . cr \ print sizeof HOLD
." Size of buffer: " /PAD /HOLD - . cr

If that area did not exist even printing a number could corrupt the circular buffer. In some
unusual circumstances, the PAD can get corrupted. If so, identify the temporary string that
gets corrupted and store it explitly into a string variable.

9.5 Simple parsing

We have already discussed 'REFILL’ a bit. We’ve seen that it is closely related to *AC-
CEPT’. 'REFILL returns a true flag if all is well. When you use the keyboard it usually
is - unless somebody pressed CTRL-D or CTRL-Z - but we will encounter more situations
where this flag comes in handy.

If you want to get a string from the keyboard, you only have to type:

CHAPTER 9. CHARACTER SEGMENT 98

refill 0= if abort then \ get string from keyboard

Which will make it properly exit when somebody closes the ’STDIN’ channel on you.
Every next call to "REFILL will overwrite any previously entered string. So if you want to
do something with that string you’ve got to get it out of there, usually to one of your own
strings.

But if accessing the TIB directly is not the proper way, what is? The use of 'REFILL’ is
closely linked to the word "PARSE-WORD?’, which is a parser. ’'PARSE-WORD’ looks for
the delimiter, whose ASCII code is on the stack.

If the string starts with the delimiter, it will skip this and all subsequent occurrences until
it finds a string. Then it will look for the delimiter again and slice the string right there. It
then returns its address and count.

This is extremely handy when you want to obtain filtered input. E.g. when you want to
split somebodies name into first name, initials and lastname:

Hans L. Bezemer

Just use this program:

." Give first name, initials, lastname: "

refill 0= if abort then \ get string from keyboard
bl parse-word \ parse first name

." First name: " \ write message

type cr \ type first name

bl parse-word \ parse initials

." Initials : " \ write message

type cr \ type initials

bl parse-word \ parse last name

." Last name : " \ write message

type cr \ write last name

You don’t have to parse the entire string with the same character. This program will split
up an MS-DOS filename into its components:

." DOS filename: " refill \ input a DOS filename
0= if abort then cr \ check for CTRL-D
char : parse-word \ parse drive
." Drive: " type ." :" cr
\ print drive

begin

char \ parse-word \ parse path

dup 0<> \ if not a NULL string
while \ print path

." Path : " type cr
repeat \ parse again
drop drop \ discard string

If 'PARSE-WORD’ reaches the end of the string and the delimiter is still not found, it
returns the remainder of that string. If you try to parse beyond the end of the string, it
returns a NULL string. That is an empty string or, in other words, a string with length zero.

Therefore, we checked whether the string had zero length. If it had, we had reached the
end of the string and further parsing was deemed useless.

CHAPTER 9. CHARACTER SEGMENT 99
9.6 Converting a string to a number

We now learned how to parse strings and retrieve components from them. But what if these
components are numbers? Well, there is a way in 4tH to convert a string to a number, but
like every number-conversion routine it has to act on invalid strings. That is, strings that
cannot be converted to a valid number.

4tH uses an internal error-value, called *(ERROR)’. The constant *(ERROR)’ is a strange
number. You can’t negate it, you can’t subtract any number from it and you can’t print it.
If 4tHs number-conversion word "'NUMBER’ can’t convert a string it returns that constant.
"’ERROR?’ checks the return value and leaves an additional true flag if an error occured
(which means: *(ERROR)’ was returned). Let’s take a look at this program:

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ 1f not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
." The number was: " . cr
then

You first enter a string, then it is parsed and "PARSE-WORD’ returns the address and count.
"NUMBER’ tries to convert it. If 'NUMBER’ returns *(ERROR)’ it wasn’t a valid string.
Otherwise, the number is right on the stack, waiting to be printed. That wasn’t so hard, was
it?

9.7 Controlling the radix

If you are a programmer, you know how important this subject is to you. Sometimes, you
want to print numbers in octal, binary or hex. 4tH can do that too. Let’s take the previous
program and alter it a bit:

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
hex
." The number was: " cr
then

We added the word "HEX just before printing the number. Now the number will be printed
in hexadecimal. 4tH has a number of words that can change the radix, like 'DECIMAL’
and ’OCTAL’. They work in the same way as "HEX.

4tH always starts in decimal. After that you are responsible. Note that all radix control
follows the flow of the program. If you call a self-defined word that alters the radix all
subsequent conversion is done too in that radix:

CHAPTER 9. CHARACTER SEGMENT 100

.hex hex . ; \ print a number in hex

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if wvalid
." The number was: " .hex cr
then

In this example not only that single number is printed in hex, but also all subsequent num-
bers will be printed in hex! A better version of the ".HEX" definition would be:

.hex hex . decimal ;

Since that one resets the radix back to decimal. Words like "HEX’ do not only control the
output of a number, but the input of numbers is also affected:

." Enter a number: " write prompt

\
refill 0= if abort then \ enter string
bl parse-word \ parse string
\
\
\

hex convert hexadecimal
number convert to a number
error? test for valid number
if \ 1f not wvalid

." You didn’t enter a valid number!" drop cr
else \ print if valid

dup

." The number was: " decimal . ." decimal" cr

." The number was: " hex . ." hex" cr
then

"NUMBER’ will now also accept hexadecimal numbers. If the number is not a valid hex-
adecimal number, it will return *(ERROR)’. You probably know there is more to radix
control than ’"OCTAL’, "HEX’ and 'DECIMAL’. No, we have not forgotten them. In fact,
you can choose any radix between 2 and 36. This slightly modified program will only
accept binary numbers:

binary 2 base ! ;

." Enter a number: " \ write prompt
refill 0= if abort then \ enter string
bl parse-word \ parse string
binary \ convert hexadecimal
number \ convert to a number
error? \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if wvalid
dup \ both decimal and hex
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr
then

"BASE’ is a predefined variable that enables you to select any radix between 2 and 36. This
makes 4tH very flexible. However, this won’t work:

hex 02B decimal . cr

CHAPTER 9. CHARACTER SEGMENT 101

4tH will try to compile "02B", but since it isn’t a word or a valid decimal number, it will
fail. Words like "THEX’ and the "BASE’ variable work only at run-time, not at compile-
time! Isn’t there a way to compile non-decimal numbers?

Sure, there is, although it is not that flexible. There are four words that control the interpre-
tation of numbers at compile-time:

1. [BINARY]
2. [OCTAL]

3. [DECIMAL]
4. [HEX]

They work fundamentally different than their run-time equivalents. First, they only work
at compile-time. Second, they are compiled sequentially' and do not follow the flow of the
program at run-time. Let’s take a look at these two programs:

[binary] 101 . cr
[octal] 101 . cr
[decimal] 101 . cr
[hex] 101 . cr

This will print the decimal numbers "5", "65", "101" and "257", since each one of them is
compiled with a specific radix.

: binary 2 base ! ;
binary 101 . cr
octal 101 . cr
decimal 101 . cr
hex 101 . cr

Now the decimal number "101" is printed in four different radixes, since at compile-time
the radix was set to decimal (which is the default). Now take a look at this program:

: do_binary [binary] ;

: do_decimal [decimal] ;
do_binary 101 decimal . cr
do_decimal 101 decimal . cr

The program will print "101" two times! Haven’t we selected binary at compile-time? No,
both '[BINARY] and '[DECIMALY]’ are compiled sequentially!

When °[BINARY] is encountered at the first time, it will set the radix at compile-time
to binary. When '[DECIMALY]’ is encountered in the second line, it will set the radix to
decimal. When the third line is compiled, the radix is still set to decimal. If you want to
make this program work, try this:

[binary]
101 decimal . cr
[decimal]
101 decimal . cr

I'Since 4tH’s one-pass compiler compiles it sequentially, duh.

CHAPTER 9. CHARACTER SEGMENT 102

When the first line is encountered, it sets the radix (at compile-time) to binary. So the num-
ber "101" at line two is compiled as a binary number. "'DECIMAL’ will just be compiled.
It will only influence the radix at run-time. The third line sets the radix at compile-time to
decimal. So the number "101" at line four is compiled as a decimal number.

Since the run-time of 4tH starts up in decimal, both occurrences of 'DECIMAL’ have little
value. We can even eliminate 'DECIMAL’ from the program altogether without affecting
the result:

[binary] 101 . cr
[decimal] 101 . cr

Note that both the compile-time radix control words and the run-time radix control words
stay in effect until they are superseded by others:

[binary] \ compile-time binary
101 \ first binary number
1011 \ second binary number
[decimal] \ compile-time decimal
5 \ decimal 5
do \ set run-time radix

i base ! \ to loop-index

dup . cr \ print number
loop
drop \ clean stack

9.8 Pictured numeric output

You probably have used this before, like when writing Basic. Never heard of "PRINT
USING.."? Well, it is a way to print numbers in a certain format. Like telephone-numbers,
time, dates, etc. Of course 4tH can do this too. In fact, you’ve probably used it before.
Both ’ and °.R’ use the same internal routines. They are called just before a number is
printed.

This numeric string is created in the PAD and overwritten with each new call. But we’ll go
into that a bit later on.

What you have to remember is that you define the format reverse. What is printed first, is
defined last in the format. So if you want to print:

060-5556916

You have to define it this way:

6196555-060

Formatting begins with the word '<#’ and ends with the word "#>’. A single number is
printed using *#” and the remainder of the number is printed using ’#s’ (which is always at
least one digit). Let’s go a bit further into that:

: print# <# #s #> type cr ;
256 print#

This simply prints a single number (since only '#S’ is between the *<#’ and the *#>" and
goes to a new line. There is hardly any difference with ’.’. You can try any (positive)
number. Note that the values that "#>’ leaves on the stack can directly be used by "TYPE’.

This is a slightly different format:

CHAPTER 9. CHARACTER SEGMENT 103

: print3# <# # # # #> type cr ;
256 print3#

1 print3#

1000 print3#

This one will print "256", "001" and "000". Always the last three positions. The *#’ simply
stands for ’print a single digit’. So if you want to print a number with at least three digits,
the format would be:

#s # #

That is: print the remainder of the number (at least one digit) and then two more. Now
reverse it:

#s

Enclose it by "<#’ and ’#>’ and add "TYPE CR’:

<# # # #s #> type cr

And that’s it! Is it? Not quite. So far we’ve only printed positive numbers. If you try a
negative number, you will find it prints garbage. This behavior can be fixed with the word
"SIGN’.

’SIGN’ simply takes the number from the stack and prints a "-" when it is negative. The
problem is that all other formatting words can only handle positive numbers. So we need
the same number twice. One with the sign and one without. A typical signed number
formatting word looks like:

: signed# dup abs <# #s sign #> type ;

Note the 'DUP ABS’ sequence. First the number is duplicated (for ’SIGN’) and then the
absolute value is taken (for the other formatting words). So we got the number on the stack
twice. First with sign (for SIGN’), second without sign (for the other formatting words).
Does that make sense to you?

We can place *SIGN’ wherever we want. If we want to place the sign after the number (like
some accountants do) we would write:

: account# dup abs <# sign #s #> type ;

But that is still not enough to write "$2000.16" is it? Well, in order to do that there is
another very handy word called "THOLD’. The word "THOLD’ just copies any character into
the formatted number. Let’s give it a try:

$2000.16

Let’s reverse that:

61.00028%

So we first want to print two numbers, even when they are zero:

CHAPTER 9. CHARACTER SEGMENT 104

4 .00028

Then we want to print a dot. This is where "HOLD’ comes in. "HOLD’ takes an ASCII
code and places the equivalent character in the formatting string. We don’t have to look up
the ASCII code for a dot of course. We can use "CHAR’:

char . hold 0002$

Then we want to print the rest of the number (which is at least one digit):

char . hold #s $

Finally we want to print the character "$". Another job for "THOLD’:

char . hold #s char $ hold

So this is our formatting word:

: currency <# # # char . hold #s char $ hold #> type cr ;

And we call it like this:

200016 currency

You can do some pretty complex stuff with these formatting words. Try to figure out this
one from the master himself, Leo Brodie:

: sextal 6 base ! ;

:00 # sextal # decimal 58 hold ;
: time# <# :00 :00 #S #> type cr ;
3615 time#

Yeah, it prints the time! Pretty neat, huh? Now try the telephone-number we discussed in
the beginning. That shouldn’t be too hard. Still, you may think it’s all a bit too complicated
for your taste.

Well, there is a solution to that, but you’ll need to include a library. Let’s say you want to
format that darn telephone number - or that currency thing:

include lib/picture.4th

605556916 s" ###-#######" picture type cr
200016 s" $?.##" picture type cr

That’s much easier, isn’t it? All you have to do is to issue a string and the library handles the
whole thing. The library works very simple: there are five special formatting characters,
the rest is copied verbatim. And yes, it handles the sign for you automatically - unless
you’ve specified the position yourself with a ’+’ character.

You can also use this library to print number in a fixed width field, e.g.:
include lib/picture.4th

605616 s" $.__" picture type cr
This will print the number in a field nine characters wide, including the decimal point and
the currency sign. Note you can print any character you want by postfixing it with a ’!” -
yes,evena’!’.

CHAPTER 9. CHARACTER SEGMENT 105

CHARACTER MEANING

Prints a single digit

2 Prints the remainder of the number
Prints a single digit, unless all
digits have been printed. Then a
space is printed

+ Prints a ’-’ if the number is
negative

! Prints the previous character
verbatim, even if it is a formatting
character

Table 9.1: Picture library formatting characters

9.9 printf () like formatting

Some people can just not be pleased, neither by 4tH’s native pictured numeric output, nor
by the libraries we offer to make it all a bit easier. They just want print £ (). And that’s
alright with me.

Although printf () is quite bulky, much slower and is known to have a few quirks of its
own, it’s not too hard too implement. 4tH has three printf () like functions:

printf Supports some basic specifiers, width and writes to ’STDOUT’;
sprintf Supports some more specifiers, one flag, width and writes to a string buffer;

fsprintf Supports most specifiers, all flags, width, precison and writes to a string buffer.

But how do you use it? First you have to include the proper file, either printf.4th,
sprintf.4thor fsprintf.4th:

include lib/sprintf.4th

printf () like functions require a format string, optionally with embedded format speci-
fiers. A format specifier has the following layout:

%$[flags] [width] [.precision]specifier

Flags, width and precision are optional. If you want to print a decimal number, you use the

non

"d" specifier. If you want to print a string, you use the "s" specifier, e.g.:

80 string mybuf
s" World" 100 s" A %d hello’s from the %s!" mybuf sprintf type cr

And this will print(f):

A 100 hello’s from the World!

You may wonder why the number comes before the string, but that is easily explained.
First, this is 4tH - we do everything the other way around. Second, the format string is
evaluated from left to right, so the number is consumed first. Consequently, it is on the top
of the stack.

Now let’s say we want to place the number in a field, five positions wide and pad it with
spaces where needed:

CHAPTER 9. CHARACTER SEGMENT 106

80 string mybuf
s" World" 100 s" A $5d hello’s from the %s!" mybuf sprintf type cr

Now it comes out this way:

A 100 hello’s from the World!

Of course we can do the same thing for the string, but this time we make it ten positions
wide:

80 string mybuf
s" World" 100 s" A %5d hello’s from the %10s!" mybuf sprintf type cr

And this is what comes out of that one:

A 100 hello’s from the World!

Want to specify that width on the stack? You can:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %$xs!" mybuf sprintf type cr

Again, the width of ”10” on the stack is consumed before the string is printed. Default,
everything is right-aligned, but you can change that with the ”-” flag:

80 string mybuf
s" World" 10 100 s" A %5d hello’s from the %$-xs!" mybuf sprintf type cr

Which gives:
A 100 hello’s from the World !

Note that although some people may find it easier to use, these words are quite fragile.
Make an error in the format string, the order or number of arguments and everything goes
haywire. It’s your choice.

It goes far beyond the scope of this manual to discuss all the possibilities of fsprintf.4th.
Even more, because you can only use it in a floating point environment. And that is still to
come?. For the time being you’ll have to do with the following tables.

9.10 Converting a number to a string

Since there is no special word in 4tH which will convert a number to a string, we’ll have to
create it ourselves. In the previous section we have seen how a numeric string is created in
the PAD. We can use this to create a word that converts a number to a string.

Because the PAD is highly volatile, we have to save the string immediately after its creation.
So we’ll create a word that not only creates the string, but places it directly in its proper
location:

(na--)
: n>string >r dup abs <# #s sign #> r> place ;

It takes a number, the address of a string and returns nothing. Example:

16 string num$
-1024 num$ n>string
num$ count type cr

21n sections 12.27 and 12.28, to be exact.

CHAPTER 9. CHARACTER SEGMENT

flags

description

printf.4th

sprintf.4th

fsprintf.4th

Left-justify within the given field width;
Right justification is the default (see width
sub-specifier).

N

Y

Y

Forces to preceed the result with a plus or
minus sign (+ or -) even for positive num-
bers. By default, only negative numbers are
preceded with a - sign.

(space)

If no sign is going to be written, a blank

space is inserted before the value.

Used with o or x specifiers the value is pre-
ceeded with 0 or Ox respectively. Used with
e, f, or g it forces the written output to con-
tain a decimal point even if no more digits
follow. By default, if no digits follow, no

decimal point is written.

Left-pads the number with zeroes (0) in-
stead of spaces when padding is specified
(see width sub-specifier).

Table 9.2: List of supported printf () flags

9.11 Aborting a program

107

Some conditions are so grave you can consider them to be fatal errors. In such cases the
only thing you can do is abort the program as soon as possible. Of course, there is a way
in 4tH to do just that. You can use either ’ABORT’ or QUIT’. Same thing. Both will
terminate your program immediately. This small program prints nothing:

abort

." This will never be printed." cr

But there is more. Let’s say you only want to exit a program when a certain condition is
met, e.g. a word left a non-zero value on the stack. In that case you would have to write
something like this:

if

." We have an error condition!"

then

cr quit

You can write that much shorter by using the word ’ABORT"”:

abort"

We have an error condition!"

>ABORT"™ will print the message following it and abort, but only when there is a non-zero
value on the stack. So this program does not abort:

false abort" This will not be printed!"
." This will be printed!"

You will find that ’ABORT"’ is a very handy tool when processing error conditions.

CHAPTER 9. CHARACTER SEGMENT 108

width description printf.4th | sprintf.4th | fsprintf.4th

(number) Minimum number of characters to be Y Y Y
printed. If the value to be printed is shorter
than this number, the result is padded with
blank spaces. The value is not truncated even
if the result is larger.

* The width is not specified in the format Y Y Y
string, but as an additional integer value ar-

gument following the argument that has to be

formatted.

.precision

.number For integer specifiers (Id, d, o, u, x): preci- N N Y
sion specifies the minimum number of digits
to be written. If the value to be written is
shorter than this number, the result is padded
with leading zeros. The value is not trun-
cated even if the result is longer. For e, g
and f specifiers: this is the number of dig-
its to be printed after the decimal point. For
s: this is the maximum number of characters
to be printed. By default all characters are
printed until the ending null character is en-
countered. If the period is specified without
an explicit value for precision, 0 is assumed.

k The precision is not specified in the format N N Y
string, but as an additional integer value ar-
gument following the argument that has to be
formatted.

Table 9.3: Width and precision of printf ()

9.12 Opening a file

You probably don’t want to write programs that only write to the screen and read from the
keyboard. So 4tH has a few words that allow you to work with files. Since 4tH is a scripting
language, its capabilities are limited. But you will find that you can perform most common
operations.

One of the limitations is that you can have a limited number of open files, but it will do in
most situations.

Opening a output-file is pretty simple. Just throw the address and length of a filename and
a file access mode on the stack and execute the word ’OPEN’. The value ’OPEN’ returns is
a simple number which bears little significance. However, you have to save it to a variable
or value, for you will need it later. We’d like to use values for storing file pointers, so we
created the word "FILE’. "FILE’ simply creates a value and initializes it, so if you use it
prematurely 4tH will issue an error message.

file myfile

s" outfile.dat" output open error? (al nl fam —-- h f)
abort" File could not be opened" (h)
to myfile (--)

’OUTPUT” is a file access mode and will open a file for writing. ’OPEN’ leaves a value
on the stack. If it equals *(ERROR)’, something was not quite right. If not, the file was

CHAPTER 9. CHARACTER SEGMENT 109

specifier | output example | printf.4th | sprintf.4th | fsprintf.4th
d Signed decimal number 392 Y Y Y
c Character a Y Y Y
S String of characters sample Y Y Y
% Single % character % Y Y Y
1d Signed decimal double number 7235 N N Y
u Unsigned decimal number 7235 N Y Y
o Unsigned octal number 610 N Y Y
X Unsigned hexadecimal number 7fa N Y Y
f Decimal floating point, lowercase 392.65 N N Y
e Scientific notation 3,93E+06 N N Y
(mantissa/exponent)
g Use the shortest representation: %e 392.65 N N Y
or %f

Table 9.4: List of supported print £ () specifiers

successfully opened. 'FILE’ is nothing but an initialized value, so you can assign it with
"TO’. ’JERROR?’ leaves the handle intact, but leaves an additional true flag if an error
occurred, which makes it much easier to evaluate.

The syntax for opening an input file is the same, except for the read-flag "INPUT’ of course:

file myotherfile

s" infile.dat" input open error?
abort" File could not be opened"
to myotherfile

9.13 Reading and writing from/to a file

There are no special words to read from or write to a file. You can use all the words you
used for keyboard-input and screen-output.

But if you open a file and do some I/O you will notice nothing has changed. Of course
not. You should be able to determine whether you write to a file or to the screen. There are
special words to do just that:

file OutFile \ file variable
s" outfile.dat" output open error?
abort" File could not be opened"

to OutFile \ open the file
OutFile use \ write to file
." This is written to disk" cr

stdout use \ write to screen

." This is written to screen" cr

After you’ve opened the file, the program will still write to the screen. When *USE’ ex-
ecutes, all output will be redirected to the file. When "USE’ executes again, but this time
with the "OUTPUT’ flag, all output will go to the screen again, but the output-file will not
be closed! Both words take the same read/write-flags as "OPEN’.

You can call "USE’ again and again, without closing or opening any files. Here is an
example using an input-file:

CHAPTER 9. CHARACTER SEGMENT 110

file OutFile
s" outfile.dat" output open error?
abort" File could not be opened"

to OutFile \ open output file
OutFile use \ write to file

." This is written to disk" cr

stdout use \ write to screen
." This is written to screen" cr

OutFile close \ close file

s" outfile.dat" input open error?
abort" File could not be opened"
to OutFile

read from disk

read 32 characters
write string to screen
read from keyboard
close file

OutFile use

pad dup 32 accept
type

stdin use

OutFile close

Py

The output of this program is:

This is written to screen
This is written to disk

Note that files are always opened in binary mode. If you’re a Microsoft user and you worry
about your text files, don’t. 4tH is much smarter than that as you will learn later on.

9.14 Closing a file

There is usually no need to close any files. When you quit the program all files are closed.
It seems like there is no need at all to close files manually, but that is a mistake.

If you want to open a file for reading to which you’ve just written, you will find it doesn’t
work. Of course, you can open a file only once.

No, there is a word which closes either the input- or the output-file, using the same read/write-
flags. You’ve already seen it, it is called ’"CLOSE’. When you close an active file, the input
(or output) is redirected to the keyboard (or screen).

9.15 Writing text-files

Writing text to a file is just as easy as writing text to screen. Open the file, redirect the
output, and write like you would write to the screen:

file OutFile \ value for file

s" outfile.dat" \ put the filename on the stack
output \ add the modifier

open error? \ open the file

abort" File could not be opened”
to OutFile

OutFile use \ write to file
." This is written to disk" cr

That’s all! Note that if you execute your program on a Microsoft Operating System, it will
write a Microsoft text file. If you do so on a Unix Operating System, it will write a Unix
text file. If you want to override that you’ll have to issue the end-of-line sequences yourself
using ’EMIT".

CHAPTER 9. CHARACTER SEGMENT 111
9.16 Reading text-files

Reading text-files is pretty straightforward. You don’t even have to open a file in text-mode
contrary to other languages. Just open the file and call 'REFILL’ until it signals end-of-file
(EOF):

\ Example program. It reads a file line by line
\ and prints it to the screen.

file InFile
s" readln.4th" input open error?

abort" Could not open file" \ open file
to InFile \ save handle
InFile use \ read from file
begin
refill \ read a line
while \ while EOF not found
0 parse-word \ parse the entire line
type \ print it
cr \ terminate line
repeat \ read next line

You will find that if you run this program, it will print itself to the screen.

’REFILL will return a non-zero value if EOF was not detected. By using the word 0=’
you can invert this value. Finally, it will read Unix ASCII-files as well as DOS ASCII-files
- and even classic Mac OS files, no matter on which platform your program is executed.

9.17 Reading long lines

The TIB is only /TIB characters long. If you read a line that is longer than that, only /TIB - 1
characters are read. The rest of the line is read when you invoke 'REFILL’ again. Although
you don’t lose any information that way, it might not be what you want. Fortunately, you
can define your own TIB:

2048 constant /mytib \ length of your TIB
/mytib string mytib \ define your own TIB
mytib /mytib source! \ tell the system about your TIB

The next time you invoke 'REFILL’, it will use your TIB instead of the system TIB, so
it will now read lines up to 2047 characters. 'SOURCE!’ takes an address/count pair and
makes it the current TIB. So if you want to use the system TIB again you issue:

tib /tib source!
And if you have forgotten which TIB you’re using try this:

source . . Cr

’SOURCE’ will return the address/count pair of the TIB you’re currently using. In fact,
this definition does absolutely nothing:

: doesnothing source source! ;

For the simple reason that it reassigns the TIB it is already using.

CHAPTER 9. CHARACTER SEGMENT 112

9.18 Reading binary files

If you process binary files, you won’t get far reading it line by line. You want to read
chunks of data. 4tH can do that too by using ’ACCEPT’. You feel there must be a catch,
since ’ACCEPT"’ terminates strings automatically. Well, there isn’t. When >’ ACCEPT’ does
not read from the keyboard, it won’t add that extra byte.

Reading blocks of data usually means defining buffers. If maintainability is an issue, define
a constant for the sizes of these buffers. You cannot only use this constants when defining
buffers, but also when calling ’ACCEPT’.

Furthermore, *ACCEPT’ returns the number of characters actually read. If this value
is compared to the number of characters we actually wanted to read, we can determine
whether a reading error or EOF occurred:

\ actual buffersize
\ define buffer

\ value for file

\ open input file
s" infile.dat" input open error?

abort" File could not be opened”

1024 constant bufsize
bufsize string buffer
file InFile

to InFile \ save handle
InFile use \ redirect input
begin \ using bufsize
bufsize (nl)
buffer over (nl a nl)
accept (nl n2)
<> (f) \ make EOF flag
until \ until EOF

Note that "BUFFER" is actually not a string, but a chunk of memory. But since a character
in 4tH takes up a single address-unit (=byte), raw chunks of memory are allocated in the
Character Segment. This is not an uncommon practice in both Forth and C.

9.19 Writing binary files

Writing binary files is very easy. Of course you need a buffer, like we discussed in the
previous section. The program